File size: 4,214 Bytes
9fcc038 2eff4b8 9fcc038 ab9c37c 9fcc038 ab9c37c 9fcc038 faa147c 9fcc038 ab9c37c 9fcc038 bb3ba5f 9fcc038 bb3ba5f 9fcc038 230f997 ab9c37c 230f997 ab9c37c 230f997 ab9c37c 230f997 141cc25 ab9c37c 141cc25 ab9c37c 141cc25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: mit
language:
- en
pretty_name: Speech Brown
size_categories:
- 10K<n<100K
task_categories:
- text-to-speech
---
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2412.13071) [![GitHub](https://img.shields.io/badge/GitHub-Code-181717?logo=github)](https://github.com/language-modeling-lab/CLASP)
## Dataset Summary
**Speech Brown** is a comprehensive, synthetic, and diverse paired speech-text dataset in 15 categories, covering a wide range of topics from fiction to religion. This dataset consists of over 55,000 sentence-level samples.
To train the [CLASP](https://huggingface.co/llm-lab/CLASP) model, we created this dataset based on the Brown Corpus. The synthetic speech was generated using the [NVIDIA Tacotron 2](https://pytorch.org/hub/nvidia_deeplearningexamples_tacotron2/) text-to-speech model.
For more information about our proposed model, please refer to this [paper](https://arxiv.org/abs/2412.13071). The dataset generation pipeline, along with code and usage instructions, is available on this [GitHub page](https://github.com/language-modeling-lab/CLASP).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64ba58d377dd483716aba098/5dy1Cb3-ZmGytf3QbQN9a.png)
## Dataset Statistics
1. Total size: Approximately 30 GB.
2. Number of samples: 55,173 pairs of speech and text.
3. Average tokens per sample: 19.00.
4. Maximum tokens in a sample: 48.
5. Average characters per sample: 96.72.
6. Number of unique tokens: 50,667
7. Categories: 15 categories consist of `adventure`, `belles_lettres`, `editorial`, `fiction`, `government`, `hobbies`, `humor`, `learned`, `lore`, `mystery`, `news`, `religion`, `reviews`, `romance`, `science_fiction`.
## Dataset Structure
To ensure ease of use, the dataset is partitioned into 10 parts. Each part can be used independently if it meets the requirements of your task and model.
### Metadata Files
1. **global_metadata**: A JSON file containing metadata for all 55,173 samples.
2. **localized_metadata**: A JSON file containing metadata for all samples, categorized into the 10 dataset partitions.
### Metadata Fields
1. **id**: The unique identifier for the sample.
2. **audio_file_path**: The file path for the audio in the dataset.
3. **category**: The category of the sample's text.
4. **text**: The corresponding text of the audio file.
## Usage Instructions
To use this dataset, download the parts and metadata files as follows:
#### Option 1: Manual Download
Visit the [dataset repository](https://huggingface.co/datasets/llm-lab/SpeechBrown/tree/main) and download all `dataset_partX.zip` files and the `global_metadata.json` file.
#### Option 2: Programmatic Download
Use the `huggingface_hub` library to download the files programmatically:
```python
from huggingface_hub import hf_hub_download
from zipfile import ZipFile
import os
import json
# Download dataset parts
zip_file_path1 = hf_hub_download(repo_id="llm-lab/SpeechBrown", filename="dataset_part1.zip", repo_type="dataset")
zip_file_path2 = hf_hub_download(repo_id="llm-lab/SpeechBrown", filename="dataset_part2.zip", repo_type="dataset")
# Download other parts...
# Download metadata
metadata_file_path = hf_hub_download(repo_id="llm-lab/SpeechBrown", filename="global_metadata.json", repo_type="dataset")
for i in range(1, 11):
with ZipFile(f'dataset_part{i}.zip', 'r') as zip_ref:
zip_ref.extractall(f'dataset_part{i}')
os.remove(f'dataset_part{i}.zip')
with open('global_metadata.json', 'r') as f:
metadata = json.load(f)
metadata.keys()
```
## Citations
If you find our paper, code, data, or models useful, please cite the paper:
```
@misc{abootorabi2024claspcontrastivelanguagespeechpretraining,
title={CLASP: Contrastive Language-Speech Pretraining for Multilingual Multimodal Information Retrieval},
author={Mohammad Mahdi Abootorabi and Ehsaneddin Asgari},
year={2024},
eprint={2412.13071},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.13071},
}
```
## Contact
If you have questions, please email [email protected] or [email protected]. |