File size: 2,241 Bytes
5a390e5 936c810 5a390e5 9f1af08 5a390e5 9f1af08 57ef098 7419b8b 36aa355 b739602 4253ea3 b739602 4253ea3 b739602 4253ea3 b739602 4253ea3 b739602 4253ea3 5a390e5 936c810 57ef098 36aa355 b739602 5a390e5 9280e27 6c3a60a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
dataset_info:
- config_name: default
features:
- name: id
dtype: int64
- name: query
dtype: string
- name: document_text
dtype: string
- name: acid
dtype: string
splits:
- name: train
num_bytes: 3902798162
num_examples: 100000
download_size: 2082375894
dataset_size: 3902798162
- config_name: nq
features:
- name: id
dtype: int64
- name: query
dtype: string
- name: document_text
dtype: string
- name: acid
dtype: string
splits:
- name: train
num_bytes: 3902798162
num_examples: 100000
- name: validation
num_bytes: 77013209
num_examples: 1968
- name: test
num_bytes: 288050960
num_examples: 7830
download_size: 2465211077
dataset_size: 4267862331
- config_name: nq-100k-raw
features:
- name: id
dtype: int64
- name: BM25_keywords
sequence: string
- name: query
dtype: string
- name: document_text
dtype: string
splits:
- name: train
num_bytes: 3918423056
num_examples: 100000
- name: validation
num_bytes: 77322775
num_examples: 1968
- name: test
num_bytes: 289276447
num_examples: 7830
download_size: 2277058620
dataset_size: 4285022278
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- config_name: nq
data_files:
- split: train
path: nq/train-*
- split: validation
path: nq/validation-*
- split: test
path: nq/test-*
- config_name: nq-100k-raw
data_files:
- split: train
path: nq-100k-raw/train-*
- split: validation
path: nq-100k-raw/validation-*
- split: test
path: nq-100k-raw/test-*
---
# Abstractive Content-Based Document IDs for Generative Retrieval
Dataset for [Summarization-Based Document IDs for Generative Retrieval with Language Models](https://arxiv.org/abs/2311.08593).
```
@misc{li2024summarizationbaseddocumentidsgenerative,
title={Summarization-Based Document IDs for Generative Retrieval with Language Models},
author={Haoxin Li and Daniel Cheng and Phillip Keung and Jungo Kasai and Noah A. Smith},
year={2024},
eprint={2311.08593},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2311.08593},
}
``` |