Datasets:

Modalities:
Tabular
Text
Formats:
csv
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Daniel Kyselica commited on
Commit
af25cab
Β·
1 Parent(s): db673bd

Basic info

Browse files
Files changed (1) hide show
  1. README.md +89 -1
README.md CHANGED
@@ -7,5 +7,93 @@ size_categories:
7
  - 1K<n<10K
8
  ---
9
 
10
- # MMT Rocket Bodies dataset for classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
 
7
  - 1K<n<10K
8
  ---
9
 
10
+ # MMT Rocket Bodies light curve classification dataset
11
+
12
+ Dataset contains light curves of 5 rocket body types from Mini Mega Tortora database (MMT)[^1]. The dataset was created to be used as a benchmark for rocket body light curve classification.
13
+
14
+ ## Dataset description
15
+
16
+ ## Usage
17
+
18
+ ```python
19
+ >>> from datasets import load_dataset
20
+
21
+ >>> dataset = load_dataset("MMT_Rocket_Bodies", data_files={"train": "train.csv", "test": "test.csv"})
22
+ >>> dataset
23
+ DatasetDict({
24
+ train: Dataset({
25
+ features: ['label', ' id', ' part', ' period', ' mag', ' phase', ' time'],
26
+ num_rows: 5676
27
+ })
28
+ test: Dataset({
29
+ features: ['label', ' id', ' part', ' period', ' mag', ' phase', ' time'],
30
+ num_rows: 1404
31
+ })
32
+ })
33
+ ```
34
+
35
+ - `label` - class name
36
+ - `id` - unique identifier of the light curve from MMT
37
+ - `part` - part number of the light curve
38
+ - `period` - rotational period of the object
39
+ - `mag` - relative path to the magnitude values file
40
+ - `phase` - relative path to the phase values file
41
+ - `time` - relative path to the time values file
42
+
43
+
44
+ ### File structure
45
+
46
+ - `data` directory contains 5 subdirectories, one for each class. Light curves are stored in file triplets in the following format:
47
+ - `<track_id>_<#part>_mag.csv` - magnitude values
48
+ - `<track_id>_<#part>_time.csv` - time values
49
+ - `<track_id>_<#part>_phase.csv` - phase angle values
50
+
51
+ where `<track_id>` is the unique identifier of the light curve from MMT, `<\#part>` is the part number of the light curve (some light curves are split into multiple parts).
52
+ - `train.csv` and `test.csv` - contains information about the train and test splits (label, id, part, period, mag, phase, time)
53
+ - `mean_std.csv` - contains mean and standard deviation for magnitudes, computed over the training set.
54
+
55
+ ```
56
+ MMT Rocket Bodies
57
+ β”œβ”€β”€ README.md
58
+ β”œβ”€β”€ train.csv
59
+ β”œβ”€β”€ test.csv
60
+ β”œβ”€β”€ mean_std.csv
61
+ β”œβ”€β”€ data
62
+ β”‚ β”œβ”€β”€ ARIANE 5 R_B
63
+ β”‚ β”‚ β”œβ”€β”€ <track_id>_<\#part>_mag.csv
64
+ β”‚ β”‚ β”œβ”€β”€ <track_id>_<\#part>_time.csv
65
+ β”‚ β”‚ β”œβ”€β”€ <track_id>_<\#part>_phase.csv
66
+ β”‚ β”œβ”€β”€ ATLAS 5 CENTAUR R_B
67
+ β”‚ β”‚ β”œβ”€β”€ ...
68
+ β”‚ β”œβ”€β”€ CZ-3B R_B
69
+ β”‚ β”‚ β”œβ”€β”€ ...
70
+ β”‚ β”œβ”€β”€ DELTA 4 R_B
71
+ β”‚ β”‚ β”œβ”€β”€ ...
72
+ β”‚ β”œβ”€β”€ FALCON 9 R_B
73
+ β”‚ β”‚ β”œβ”€β”€ ...
74
+ β”‚ β”œβ”€β”€ H-2A R_B
75
+ β”‚ β”‚ β”œβ”€β”€ ...
76
+ ```
77
+
78
+
79
+ ## Data preprocessing
80
+
81
+ To create data sutable for both CNN and RNN based models, the light curves were preprocessed in the following way:
82
+
83
+ 1. Split the light curves if the gap between two consecutive measurements is larger than object's rotational period.
84
+ 2. Split the light curves to have maximum span 1_000 seconds.
85
+ 3. Filter out light curves which folded form divided into 100 bins has more than 25% of bins empty.
86
+ 5. Resample the light curves to 10_000 points with step 0.1 seconds.
87
+ 4. Filter out light curves with less than 100 measurements.
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+ [^1]: Karpov, S., et al. "Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation." Revista Mexicana de AstronomΓ­a y AstrofΓ­sica 48 (2016): 91-96.
99