# coding=utf-8
# Copyright 2023 Charles Koutcheme and the original authors of the datasets 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import datasets
from itertools import product



_DUBLIN_DESCRIPTION = """
The Dublin programming dataset is a dataset composed of students' submissions 
to introductory programming assignments at the University of Dublin. 
Students submitted these programs for multiple programming courses over the duration of three academic years."""

_SINGAPORE_DESCRIPTION = """
This dataset contains 2442 correct and 1783 buggy program attempts by 361 undergraduate students crediting 
an introduction to Python programming course at NUS (National University of Singapore).
"""

_NEW_CALEDONIA_DESCRIPTION = """
The NewCaledonia dataset includes the programs submitted in 2020 by a group of 60 students from the University of New Caledonia, 
on a programming training platform. This plateform were developed and made available by the Computer Science department from the Orléans' 
Technological Institute (University of Orléans, France). This release contains a subset of the assignments.
"""

_DUBLIN_HOMEPAGE = """https://figshare.com/articles/dataset/_5_Million_Python_Bash_Programming_Submissions_for_5_Courses_Grades_for_Computer-Based_Exams_over_3_academic_years_/12610958"""

_SINGAPORE_HOMEPAGE = """https://github.com/githubhuyang/refactory"""

_NEW_CALEDONIA_HOMEPAGE = """https://github.com/GCleuziou/code2aes2vec/tree/master/Datasets"""

_DUBLIN_CITATION = """
@inproceedings{azcona2019user2code2vec,
  title={user2code2vec: Embeddings for Profiling Students Based on Distributional Representations of Source Code},
  author={Azcona, David and Arora, Piyush and Hsiao, I-Han and Smeaton, Alan},
  booktitle={Proceedings of the 9th International Learning Analytics & Knowledge Conference (LAK’19)},
  year={2019},
  organization={ACM}
}

@inproceedings{DBLP:conf/edm/CleuziouF21,
  author    = {Guillaume Cleuziou and
               Fr{\'{e}}d{\'{e}}ric Flouvat},
  editor    = {Sharon I{-}Han Hsiao and
               Shaghayegh (Sherry) Sahebi and
               Fran{\c{c}}ois Bouchet and
               Jill{-}J{\^{e}}nn Vie},
  title     = {Learning student program embeddings using abstract execution traces},
  booktitle = {Proceedings of the 14th International Conference on Educational Data
               Mining, {EDM} 2021, virtual, June 29 - July 2, 2021},
  publisher = {International Educational Data Mining Society},
  year      = {2021},
  timestamp = {Wed, 09 Mar 2022 16:47:22 +0100},
  biburl    = {https://dblp.org/rec/conf/edm/CleuziouF21.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_SINGAPORE_CITATION = """
@inproceedings{yang2019refactory,
    title={Re-factoring based Program Repair applied to Programming Assignments},
    author={Hu, Yang and Ahmed, Umair Z. and Mechtaev, Sergey and Leong, Ben and Roychoudhury, Abhik},
    booktitle={2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)},
    pages={388--398},
    year={2019},
    organization={IEEE/ACM}
}
"""

_NEW_CALEDONIA_CITATION = """
@inproceedings{DBLP:conf/edm/CleuziouF21,
  author    = {Guillaume Cleuziou and
               Fr{\'{e}}d{\'{e}}ric Flouvat},
  editor    = {Sharon I{-}Han Hsiao and
               Shaghayegh (Sherry) Sahebi and
               Fran{\c{c}}ois Bouchet and
               Jill{-}J{\^{e}}nn Vie},
  title     = {Learning student program embeddings using abstract execution traces},
  booktitle = {Proceedings of the 14th International Conference on Educational Data
               Mining, {EDM} 2021, virtual, June 29 - July 2, 2021},
  publisher = {International Educational Data Mining Society},
  year      = {2021},
  timestamp = {Wed, 09 Mar 2022 16:47:22 +0100},
  biburl    = {https://dblp.org/rec/conf/edm/CleuziouF21.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DESCRIPTION = """
Intro Programming. A dataset of student submissions to programming assignments.
"""

_DUBLIN_URLS = {
    "metadata": {
        "train": "./data/dublin_metadata_train.jsonl",
        "test": "./data/dublin_metadata_test.jsonl"
    },
    "data": {
        "train": f"./data/dublin_data_train.jsonl",
        "test": f"./data/dublin_data_test.jsonl",
    },
    "repair": {
        "train": f"./data/dublin_repair_train.jsonl",
        "test": f"./data/dublin_repair_test.jsonl",
    }
}

_SINGAPORE_URLS = {
    "metadata": {
        "train": "./data/singapore_metadata_train.jsonl",
    },
     "data": {
        "train": f"./data/singapore_data_train.jsonl",
    },
    "repair": {
        "train": f"./data/singapore_repair_train.jsonl",
    }
}

_NEW_CALEDONIA_URLS = {
    "metadata": {
        "train": "./data/newcaledonia_metadata_train.jsonl",
    },
     "data": {
        "train": f"./data/newcaledonia_data_train.jsonl",
    },
}

_URLS = {
    "dublin": _DUBLIN_URLS,
    "singapore": _SINGAPORE_URLS,
    "newcaledonia": _NEW_CALEDONIA_URLS,
}

class IntroProgConfig(datasets.BuilderConfig):
    """ BuilderConfig for IntroProg."""

    def __init__(self, **kwargs):
        """BuilderConfig for IntroProg.
        Args:
          **kwargs: keyword arguments forwarded to super.

        """
        super(IntroProgConfig, self).__init__(**kwargs)


class IntroProg(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("2.12.0")

    # splits "data", "repair", "bugs"
    # also add here the "metadata" split which will also contain the full metadata 
    tasks = [("metadata", "Information about the programming assignments."),
             ("data", "Submissions to the programming assignments."),
             ("repair", "Buggy programs and ground truth repair(s)."),]
             # ("bug", "Buggy programs and bug categories.")]
    
    sources = ["dublin", "singapore"]

    configurations = list(product(tasks, sources))
    configurations.append((tasks[0], "newcaledonia"))
    configurations.append((tasks[1], "newcaledonia"))

    BUILDER_CONFIGS = []
    for (task, description), source in configurations:
        BUILDER_CONFIGS.append(
            IntroProgConfig(
                name=f"{source}_{task}",
                version=VERSION,          
            )
        )

    def _info(self):

        source, task = self.config.name.split("_")

        if source == "dublin":
            description = _DUBLIN_DESCRIPTION
            citation = _DUBLIN_CITATION
            homepage = _DUBLIN_HOMEPAGE
        elif source == "singapore":
            description =_SINGAPORE_DESCRIPTION
            citation = _SINGAPORE_CITATION
            homepage = _SINGAPORE_HOMEPAGE
        elif source == "newcaledonia":
            description = _NEW_CALEDONIA_DESCRIPTION
            citation = _NEW_CALEDONIA_CITATION
            homepage = _NEW_CALEDONIA_HOMEPAGE
        else:
            description = ""
            citation = ""
            homepage = ""

        main_features = datasets.Features({
                "submission_id": datasets.Value("int32"),
                "func_code": datasets.Value("string"),
                # assignment information
                "assignment_id": datasets.Value("string"),
                "func_name": datasets.Value("string"),
                "description": datasets.Value(dtype='string'),
                "test": datasets.Value(dtype='string'),
            })
        
        if task == "data":
            features = main_features
            features["correct"] = datasets.Value(dtype="bool")
            
            if source == "dublin":
                features["user"] = datasets.Value("string")
                features["academic_year"] = datasets.Value('int32')
                features['date']: datasets.Value('timestamp[s]')

        elif task == "metadata":
            # metadata information 
            features = datasets.Features({
                "assignment_id": datasets.Value("string"),
                "func_name": datasets.Value("string"),
                "reference_solution": datasets.Value("string"),
                "description": datasets.Value("string"),
                "test": datasets.Value("string"),
            })

        elif task == "repair":
            features = main_features
            features["annotation"] = datasets.Value("string")
            if source == "dublin":
                features["user"] = datasets.Value("string")
                features["academic_year"] = datasets.Value('int32')
                features['date']: datasets.Value('timestamp[s]')
                
        elif task == "bug":
            features = main_features
            features["comments"] = datasets.Value("string")

        return datasets.DatasetInfo(
                description=description,
                citation=citation,
                homepage=homepage,

                features=features,
                supervised_keys=None,
            )
    

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        source, task = self.config.name.split("_")
        urls = _URLS[source][task]
        downloaded_files = dl_manager.download_and_extract(urls)

        splits = []
        for name, files in downloaded_files.items():
            splits.append(datasets.SplitGenerator(name=name, gen_kwargs={"filepath": files}))
 
        return splits 

    def _generate_examples(self, filepath):
        with open(filepath, "r") as f:
            lines = f.read().splitlines()
            for key, line in enumerate(lines):
                d = json.loads(line)
                d = {k:v for k, v in d.items() if k in self.info.features}
                yield key, d