import os import json import datasets _DESCRIPTION = """ TableSense Dataset - Spreadsheet Table Detection task from the VEnron2, VEUSES, and VFUSE datasets. """ VERSION = datasets.Version("1.0.0") def parse_range(range_str): start, end = range_str.split(':') start_col = ''.join(c for c in start if c.isalpha()) start_row = int(''.join(c for c in start if c.isdigit())) end_col = ''.join(c for c in end if c.isalpha()) end_row = int(''.join(c for c in end if c.isdigit())) return {"start_col": start_col, "start_row": start_row, "end_col": end_col, "end_row": end_row} class Tablesense(datasets.GeneratorBasedBuilder): """Dataset for loading arbitrary .xlsx files with a .jsonl metadata file.""" def _info(self): features = { "filepath": datasets.Value("string"), 'sheet_name': datasets.Value("string"), 'split': datasets.Value("string"), 'table_regions':[ { "start_col": datasets.Value("string"), "start_row": datasets.Value("int32"), "end_col": datasets.Value("string"), "end_row": datasets.Value("int32") } ] } return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features) ) def _split_generators(self, dl_manager): """Define splits.""" # Load your dataset folder data_path = "data.tar.gz" xlsx_dir = os.path.join(dl_manager.download_and_extract(data_path), "data") metadata_file = "annotations.jsonl" return [ datasets.SplitGenerator( name="train", gen_kwargs={ "files_dir": xlsx_dir, "metadata_file": metadata_file, }, ) ] def _generate_examples(self, files_dir, metadata_file): """Yields examples.""" # Load metadata from the .jsonl file with open(metadata_file, "r") as f: metadata = [json.loads(line.strip()) for line in f] for i, meta in enumerate(metadata): file_name = meta.get("clean_file") # Load corresponding .xlsx file xlsx_path = os.path.join(files_dir, file_name) if not os.path.exists(xlsx_path): continue yield i, { "filepath": xlsx_path, "sheet_name": meta.get("sheet_name"), "split": meta.get("split"), "table_regions": [parse_range(rg) for rg in meta.get("table_regions")] }