File size: 1,991 Bytes
25024da
 
 
 
 
 
 
 
9d64283
25024da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
---
license: mit
language:
- en
---
# Deep Imitation Learning for Humanoid Loco-manipulation through Human Teleoperation
[Mingyo Seo](https://mingyoseo.com), [Steve Han](https://www.linkedin.com/in/stevehan2001), [Kyutae Sim](https://www.linkedin.com/in/kyutae-sim-888593166), [Seung Hyeon Bang](https://sites.utexas.edu/hcrl/people/), [Carlos Gonzalez](https://sites.utexas.edu/hcrl/people/), [Luis Sentis](https://sites.google.com/view/lsentis), [Yuke Zhu](https://www.cs.utexas.edu/~yukez)

[Project](https://ut-austin-rpl.github.io/TRILL) | [arXiv](https://arxiv.org/abs/2309.01952) | [code](https://github.com/UT-Austin-RPL/TRILL)

## Abstract
We tackle the problem of developing humanoid loco-manipulation skills with deep imitation learning. The challenge of collecting human demonstrations for humanoids, in conjunction with the difficulty of policy training under a high degree of freedom, presents substantial challenges. We introduce TRILL, a data-efficient framework for learning humanoid loco-manipulation policies from human demonstrations. In this framework, we collect human demonstration data through an intuitive Virtual Reality (VR) interface. We employ the whole-body control formulation to transform task-space commands from human operators into the robot's joint-torque actuation while stabilizing its dynamics. By employing high-level action abstractions tailored for humanoid robots, our method can efficiently learn complex loco-manipulation skills. We demonstrate the effectiveness of TRILL in simulation and on a real-world robot for performing various types of tasks. 

## Citing
```
@inproceedings{seo2023trill,
   title={Deep Imitation Learning for Humanoid Loco-manipulation through Human Teleoperation},
   author={Seo, Mingyo and Han, Steve and Sim, Kyutae and 
           Bang, Seung Hyeon and Gonzalez, Carlos and 
           Sentis, Luis and Zhu, Yuke},
   booktitle={IEEE-RAS International Conference on Humanoid Robots (Humanoids)},
   year={2023}
}
```