Datasets:
Tasks:
Image Classification
Size:
10K - 100K
| import os | |
| import datasets | |
| from datasets.tasks import ImageClassification | |
| _HOMEPAGE = "https://universe.roboflow.com/popular-benchmarks/mit-indoor-scene-recognition/dataset/5" | |
| _LICENSE = "MIT" | |
| _CITATION = """\ | |
| """ | |
| _CATEGORIES = ['meeting_room', 'cloister', 'stairscase', 'restaurant', 'hairsalon', 'children_room', 'dining_room', 'lobby', 'museum', 'laundromat', 'computerroom', 'grocerystore', 'hospitalroom', 'buffet', 'office', 'warehouse', 'garage', 'bookstore', 'florist', 'locker_room', 'inside_bus', 'subway', 'fastfood_restaurant', 'auditorium', 'studiomusic', 'airport_inside', 'pantry', 'restaurant_kitchen', 'casino', 'movietheater', 'kitchen', 'waitingroom', 'artstudio', 'toystore', 'kindergarden', 'trainstation', 'bedroom', 'mall', 'corridor', 'bar', 'classroom', 'shoeshop', 'dentaloffice', 'videostore', 'laboratorywet', 'tv_studio', 'church_inside', 'operating_room', 'jewelleryshop', 'bathroom', 'clothingstore', 'closet', 'winecellar', 'livingroom', 'nursery', 'gameroom', 'inside_subway', 'deli', 'bakery', 'library', 'prisoncell', 'gym', 'concert_hall', 'greenhouse', 'elevator', 'poolinside', 'bowling'] | |
| class INDOORSCENECLASSIFICATIONConfig(datasets.BuilderConfig): | |
| """Builder Config for indoor-scene-classification""" | |
| def __init__(self, data_urls, **kwargs): | |
| """ | |
| BuilderConfig for indoor-scene-classification. | |
| Args: | |
| data_urls: `dict`, name to url to download the zip file from. | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(INDOORSCENECLASSIFICATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) | |
| self.data_urls = data_urls | |
| class INDOORSCENECLASSIFICATION(datasets.GeneratorBasedBuilder): | |
| """indoor-scene-classification image classification dataset""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| INDOORSCENECLASSIFICATIONConfig( | |
| name="full", | |
| description="Full version of indoor-scene-classification dataset.", | |
| data_urls={ | |
| "train": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/train.zip", | |
| "validation": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid.zip", | |
| "test": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/test.zip", | |
| } | |
| , | |
| ), | |
| INDOORSCENECLASSIFICATIONConfig( | |
| name="mini", | |
| description="Mini version of indoor-scene-classification dataset.", | |
| data_urls={ | |
| "train": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip", | |
| "validation": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip", | |
| "test": "https://huggingface.co/datasets/keremberke/indoor-scene-classification/resolve/main/data/valid-mini.zip", | |
| }, | |
| ) | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| features=datasets.Features( | |
| { | |
| "image_file_path": datasets.Value("string"), | |
| "image": datasets.Image(), | |
| "labels": datasets.features.ClassLabel(names=_CATEGORIES), | |
| } | |
| ), | |
| supervised_keys=("image", "labels"), | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| license=_LICENSE, | |
| task_templates=[ImageClassification(image_column="image", label_column="labels")], | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_files = dl_manager.download_and_extract(self.config.data_urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "files": dl_manager.iter_files([data_files["train"]]), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "files": dl_manager.iter_files([data_files["validation"]]), | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "files": dl_manager.iter_files([data_files["test"]]), | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, files): | |
| for i, path in enumerate(files): | |
| file_name = os.path.basename(path) | |
| if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")): | |
| yield i, { | |
| "image_file_path": path, | |
| "image": path, | |
| "labels": os.path.basename(os.path.dirname(path)), | |
| } | |