File size: 16,210 Bytes
5c8ff03 ec168b6 5c8ff03 ec168b6 ff634e1 ec168b6 d974029 d8cc9c0 ec168b6 ff634e1 ec168b6 ff634e1 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 5c8ff03 ec168b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import pandas as pd
from pathlib import Path
import pyarrow # ensures pyarrow is installed for Parquet support
import numpy as np
import sys
from tqdm.auto import tqdm
import logging
from datetime import datetime
# Add the api_models directory to the Python path to import existing modules
sys.path.append(str(Path(__file__).parent / "runs" / "api_models"))
from compute_bootstrap_ci import (
load_inference_results_by_grader,
extract_config_from_log,
)
from metrics import compute_metrics
from omegaconf import OmegaConf
# Set up logging
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
log_file = log_dir / f"create_parquet_files_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
# Configure logging to write to both file and console
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
# Also create a separate error-only log file
error_log_file = log_dir / f"create_parquet_files_errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
error_handler = logging.FileHandler(error_log_file)
error_handler.setLevel(logging.ERROR)
error_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(error_handler)
def simplify_experiment_name(name):
"""Simplify experiment names according to the mapping rules."""
if pd.isna(name):
return name
# Convert to string to handle any non-string inputs
name = str(name)
# Define the mapping rules
mappings = {
# Sabia-3 mappings
'sabia-3-zero-shot': 'sabia3-studentPrompt',
'sabia-3-extractor-zero-shot': 'sabia3-extractor',
'sabia-3-grader-zero-shot': 'sabia3-graderPrompt',
# Deepseek mappings
'deepseek-reasoner-zero-shot': 'deepseekR1-studentPrompt',
'deepseek-reasoner-extractor-zero-shot': 'deepseekR1-extractor',
'deepseek-reasoner-grader-zero-shot': 'deepseekR1-graderPrompt',
# GPT-4o mappings
'gpt-4o-2024-11-20-zero-shot': 'gpt4o-studentPrompt',
'gpt-4o-2024-11-20-extractor-zero-shot': 'gpt4o-extractor',
'gpt-4o-2024-11-20-grader-zero-shot': 'gpt4o-graderPrompt',
}
# Apply direct mappings first
for pattern, replacement in mappings.items():
if pattern in name:
name = name.replace(pattern, replacement)
# Handle jbcs2025 prefixed names
if name.startswith('jbcs2025_'):
# Remove the prefix
name = name[9:]
# First, remove any duplicated model-specific patterns that appear multiple times
# These patterns indicate the experiment setup was duplicated in the name
duplication_patterns = [
'llama31_classification_lora',
'phi35_classification_lora',
'phi4_classification_lora',
'encoder_classification'
'tucano_classification_lora'
]
for pattern in duplication_patterns:
# Count occurrences
count = name.count(f'-{pattern}-')
if count > 1:
# Replace all but keep track of components
parts = name.split(f'-{pattern}-')
# Keep the first part and the last part (which has the config)
if len(parts) > 2:
name = parts[0] + '-' + parts[-1]
# Handle BERT variants
if 'bert-base-portuguese-cased' in name:
name = name.replace('bert-base-portuguese-cased', 'bertimbau-base')
elif 'BERTugues-base-portuguese-cased' in name:
name = name.replace('BERTugues-base-portuguese-cased', 'bertugues-base')
elif 'bert-base-multilingual-cased' in name:
name = name.replace('bert-base-multilingual-cased', 'mbert-base')
elif 'bert-large-portuguese-cased' in name:
name = name.replace('bert-large-portuguese-cased', 'bertimbau-large')
elif 'albertina-1b5-portuguese-ptbr-encoder' in name:
name = name.replace('albertina-1b5-portuguese-ptbr-encoder', 'albertina-1b5-ptbr')
# Handle Llama variants
elif 'Llama-3.1-8B-llama31_classification_lora' in name:
name = name.replace('Llama-3.1-8B-llama31_classification_lora', 'llama3.1-8b-lora')
elif 'Llama-3.1-8B' in name:
name = name.replace('Llama-3.1-8B', 'llama3.1-8b-lora')
# Handle Tucano variants
elif 'Tucano-2b4-Instruct-tucano_classification_lora' in name:
name = name.replace('Tucano-2b4-Instruct-tucano_classification_lora', 'tucano2b4-lora')
elif 'Tucano-2b4-Instruct' in name:
name = name.replace('Tucano-2b4-Instruct', 'tucano2b4-lora')
# Handle Phi variants
elif 'Phi-3.5-mini-instruct-phi35_classification_lora' in name:
name = name.replace('Phi-3.5-mini-instruct-phi35_classification_lora', 'phi3.5-mini-lora')
elif 'Phi-3.5-mini-instruct' in name:
name = name.replace('Phi-3.5-mini-instruct', 'phi3.5-mini-lora')
elif 'phi-4-phi4_classification_lora' in name:
name = name.replace('phi-4-phi4_classification_lora', 'phi4-lora')
elif 'phi-4' in name:
name = name.replace('phi-4', 'phi4-lora')
# Clean up any remaining classification patterns
name = name.replace('-encoder_classification', '')
name = name.replace('_classification_lora', '')
name = name.replace('-llama31', '')
name = name.replace('-phi35', '')
name = name.replace('-phi4', '')
name = name.replace('-tucano', '')
# Extract components and reorder
parts = name.split('-')
# Look for competency (C1-C5), context type, and LoRA rank
competency = None
context = None
lora_rank = None
model_parts = []
i = 0
while i < len(parts):
part = parts[i]
if part in ['C1', 'C2', 'C3', 'C4', 'C5']:
competency = part
elif part == 'essay_only':
context = 'essay-only'
elif part == 'full_context':
context = 'full-context'
elif part in ['essay', 'full'] and i + 1 < len(parts):
# Handle split context names
if parts[i+1] == 'only':
context = 'essay-only'
i += 1 # Skip next part
elif parts[i+1] == 'context':
context = 'full-context'
i += 1 # Skip next part
elif part in ['r8', 'r16']:
lora_rank = part
elif part and part not in ['only', 'context']: # Skip empty parts and orphaned context words
model_parts.append(part)
i += 1
# Reconstruct the name in the desired order: model-competency-context-rank
new_parts = model_parts
if competency:
new_parts.append(competency)
if context:
new_parts.append(context)
if lora_rank:
new_parts.append(lora_rank)
name = '-'.join(new_parts)
# Final cleanup: remove any double dashes
while '--' in name:
name = name.replace('--', '-')
return name
def find_and_group_csvs():
base = Path(".")
groups = {
"evaluation_results": sorted(base.rglob("evaluation_results.csv")),
"bootstrap_confidence_intervals": sorted(
base.rglob("bootstrap_confidence_intervals.csv")
),
}
for name, paths in groups.items():
logger.info(f"Found {len(paths)} files for '{name}'")
if not paths:
logger.warning(f"No files found for '{name}'")
return groups
def enhance_evaluation_results(eval_df, csv_paths):
"""Enhance evaluation results with additional metrics from JSONL files."""
enhanced_rows = []
failed_count = 0
# Create a mapping from row index to CSV path
# Since we're processing multiple CSVs that get concatenated,
# we need to track which rows came from which CSV file
row_to_path = {}
current_idx = 0
for path in csv_paths:
df = pd.read_csv(path)
for i in range(len(df)):
row_to_path[current_idx + i] = path
current_idx += len(df)
for idx, row in tqdm(
eval_df.iterrows(), desc="Processing evaluation rows", total=len(eval_df)
):
# Get the CSV path for this row
csv_path = row_to_path.get(idx)
if csv_path is None:
error_msg = f"CSV file not found for row {idx}"
logger.error(error_msg)
failed_count += 1
continue
try:
# Extract experiment ID from the path
# The experiment ID is typically the parent directory name
experiment_id = csv_path.parent.name
# Simplify the experiment ID
experiment_id = simplify_experiment_name(experiment_id)
# Find corresponding JSONL file in the same directory
jsonl_path = csv_path.parent / "inference_results.jsonl"
if not jsonl_path.exists():
# Try with experiment name prefix
jsonl_files = list(csv_path.parent.glob("*_inference_results.jsonl"))
if jsonl_files:
jsonl_path = jsonl_files[0]
else:
raise FileNotFoundError(f"JSONL file not found in {csv_path.parent}")
# Find log file to extract configuration
log_files = list(csv_path.parent.glob("*run_inference_experiment.log"))
if not log_files:
raise FileNotFoundError(f"Log file not found in {csv_path.parent}")
log_path = log_files[0]
# Load inference results and compute metrics
# Extract configuration from log file
config_dict = extract_config_from_log(log_path)
# Convert to OmegaConf DictConfig for compatibility with compute_metrics
cfg = OmegaConf.create(config_dict)
# Load data using the existing function
grader_a_data, grader_b_data = load_inference_results_by_grader(jsonl_path)
# Extract predictions and labels for each grader
all_predictions_a = np.array(
[data["prediction"] for data in grader_a_data.values()]
)
all_labels_a = np.array([data["label"] for data in grader_a_data.values()])
all_predictions_b = np.array(
[data["prediction"] for data in grader_b_data.values()]
)
all_labels_b = np.array([data["label"] for data in grader_b_data.values()])
# Compute concat(A,B) metrics for verification
# Concatenate predictions and labels from both graders
concat_predictions = np.concatenate([all_predictions_a, all_predictions_b])
concat_labels = np.concatenate([all_labels_a, all_labels_b])
metrics_concat = compute_metrics((concat_predictions, concat_labels), cfg)
# Verify that computed concat metrics match original CSV values
# Check a few key metrics with some tolerance for floating point comparison
tolerance = 1e-6
for metric in ["accuracy", "QWK", "Macro_F1", "Weighted_F1"]:
if metric in row and metric in metrics_concat:
original_value = row[metric]
computed_value = metrics_concat[metric]
# You can make this a hard assertion if needed:
assert abs(original_value - computed_value) <= tolerance, (
f"Metric {metric} mismatch: CSV={original_value}, Computed={computed_value}"
)
# 1. Add original row with concat(A,B) metrics
concat_row = row.copy()
concat_row["experiment_id"] = experiment_id
concat_row["metric_group"] = "concat(A,B)"
enhanced_rows.append(concat_row)
# 2. Compute metrics for A and B separately first
metrics_a = compute_metrics((all_predictions_a, all_labels_a), cfg)
metrics_b = compute_metrics((all_predictions_b, all_labels_b), cfg)
# 3. Compute avg(A,B) as the average of metrics, not metrics of averaged predictions
avg_row = row.copy()
avg_row["experiment_id"] = experiment_id
avg_row["metric_group"] = "avg(A,B)"
# Average the metrics from A and B
for metric in metrics_a:
if metric in metrics_b and metric in avg_row:
avg_value = (metrics_a[metric] + metrics_b[metric]) / 2
avg_row[metric] = avg_value
enhanced_rows.append(avg_row)
# 4. Add onlyA metrics
only_a_row = row.copy()
only_a_row["experiment_id"] = experiment_id
only_a_row["metric_group"] = "onlyA"
# Update metric columns with onlyA values
for metric, value in metrics_a.items():
if metric in only_a_row:
only_a_row[metric] = value
enhanced_rows.append(only_a_row)
# 5. Add onlyB metrics
only_b_row = row.copy()
only_b_row["experiment_id"] = experiment_id
only_b_row["metric_group"] = "onlyB"
# Update metric columns with onlyB values
for metric, value in metrics_b.items():
if metric in only_b_row:
only_b_row[metric] = value
enhanced_rows.append(only_b_row)
except Exception as e:
failed_count += 1
error_msg = f"Failed to process {csv_path.parent if csv_path else 'unknown path'}: {str(e)}"
logger.error(error_msg)
# Log full traceback for debugging
import traceback
logger.error(f"Traceback:\n{traceback.format_exc()}")
# Skip this row and continue with the next one
continue
logger.info(f"Successfully processed {len(enhanced_rows)//4} out of {len(eval_df)} rows")
if failed_count > 0:
logger.warning(f"Failed to process {failed_count} rows. Check error log: {error_log_file}")
return pd.DataFrame(enhanced_rows)
def combine(paths, out_path):
if not paths:
logger.info(f"No files to combine for {out_path}")
return
logger.info(f"Combining {len(paths)} files into {out_path}")
dfs = []
for p in paths:
df = pd.read_csv(p)
# Add experiment_id column based on the parent directory name
experiment_id = p.parent.name
experiment_id = simplify_experiment_name(experiment_id)
df["experiment_id"] = experiment_id
dfs.append(df)
# Basic schema validation
cols = {tuple(df.columns) for df in dfs}
if len(cols) > 1:
error_msg = f"{out_path}: header mismatch across shards"
logger.error(error_msg)
raise ValueError(error_msg)
combined = pd.concat(dfs, ignore_index=True)
# Enhance evaluation results with additional metrics
if "evaluation_results" in out_path:
logger.info("Enhancing evaluation results with additional metrics...")
combined = enhance_evaluation_results(combined, paths)
combined.to_parquet(out_path, engine="pyarrow", index=False)
logger.info(f"Successfully written {out_path} with {len(combined)} rows")
if __name__ == "__main__":
logger.info(f"Starting parquet file creation. Logs will be saved to: {log_file}")
logger.info(f"Error-only log will be saved to: {error_log_file}")
groups = find_and_group_csvs()
combine(groups["evaluation_results"], "evaluation_results-00000-of-00001.parquet")
combine(
groups["bootstrap_confidence_intervals"],
"bootstrap_confidence_intervals-00000-of-00001.parquet",
)
logger.info("Parquet file creation completed")
|