File size: 16,210 Bytes
5c8ff03
 
 
ec168b6
 
 
 
 
5c8ff03
ec168b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff634e1
ec168b6
 
 
 
 
 
 
 
 
 
 
 
 
d974029
 
 
 
 
 
 
 
d8cc9c0
 
ec168b6
 
 
 
 
 
ff634e1
 
 
 
 
 
ec168b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff634e1
ec168b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8ff03
 
 
 
 
ec168b6
 
 
5c8ff03
 
ec168b6
5c8ff03
ec168b6
5c8ff03
 
 
ec168b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8ff03
 
ec168b6
5c8ff03
 
ec168b6
 
 
 
 
 
 
 
 
 
 
 
5c8ff03
 
 
 
ec168b6
 
 
5c8ff03
 
ec168b6
 
 
 
 
 
5c8ff03
ec168b6
5c8ff03
 
 
ec168b6
 
 
5c8ff03
 
ec168b6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import pandas as pd
from pathlib import Path
import pyarrow  # ensures pyarrow is installed for Parquet support
import numpy as np
import sys
from tqdm.auto import tqdm
import logging
from datetime import datetime

# Add the api_models directory to the Python path to import existing modules
sys.path.append(str(Path(__file__).parent / "runs" / "api_models"))

from compute_bootstrap_ci import (
    load_inference_results_by_grader,
    extract_config_from_log,
)
from metrics import compute_metrics
from omegaconf import OmegaConf

# Set up logging
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
log_file = log_dir / f"create_parquet_files_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"

# Configure logging to write to both file and console
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler(log_file),
        logging.StreamHandler(sys.stdout)
    ]
)
logger = logging.getLogger(__name__)

# Also create a separate error-only log file
error_log_file = log_dir / f"create_parquet_files_errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
error_handler = logging.FileHandler(error_log_file)
error_handler.setLevel(logging.ERROR)
error_handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(error_handler)

def simplify_experiment_name(name):
    """Simplify experiment names according to the mapping rules."""
    if pd.isna(name):
        return name
    
    # Convert to string to handle any non-string inputs
    name = str(name)
    
    # Define the mapping rules
    mappings = {
        # Sabia-3 mappings
        'sabia-3-zero-shot': 'sabia3-studentPrompt',
        'sabia-3-extractor-zero-shot': 'sabia3-extractor', 
        'sabia-3-grader-zero-shot': 'sabia3-graderPrompt',
        
        # Deepseek mappings
        'deepseek-reasoner-zero-shot': 'deepseekR1-studentPrompt',
        'deepseek-reasoner-extractor-zero-shot': 'deepseekR1-extractor',
        'deepseek-reasoner-grader-zero-shot': 'deepseekR1-graderPrompt',
        
        # GPT-4o mappings
        'gpt-4o-2024-11-20-zero-shot': 'gpt4o-studentPrompt',
        'gpt-4o-2024-11-20-extractor-zero-shot': 'gpt4o-extractor',
        'gpt-4o-2024-11-20-grader-zero-shot': 'gpt4o-graderPrompt',
    }
    
    # Apply direct mappings first
    for pattern, replacement in mappings.items():
        if pattern in name:
            name = name.replace(pattern, replacement)
    
    # Handle jbcs2025 prefixed names
    if name.startswith('jbcs2025_'):
        # Remove the prefix
        name = name[9:]
        
        # First, remove any duplicated model-specific patterns that appear multiple times
        # These patterns indicate the experiment setup was duplicated in the name
        duplication_patterns = [
            'llama31_classification_lora',
            'phi35_classification_lora',
            'phi4_classification_lora',
            'encoder_classification'
            'tucano_classification_lora'
        ]
        
        for pattern in duplication_patterns:
            # Count occurrences
            count = name.count(f'-{pattern}-')
            if count > 1:
                # Replace all but keep track of components
                parts = name.split(f'-{pattern}-')
                # Keep the first part and the last part (which has the config)
                if len(parts) > 2:
                    name = parts[0] + '-' + parts[-1]
        
        # Handle BERT variants
        if 'bert-base-portuguese-cased' in name:
            name = name.replace('bert-base-portuguese-cased', 'bertimbau-base')
        elif 'BERTugues-base-portuguese-cased' in name:
            name = name.replace('BERTugues-base-portuguese-cased', 'bertugues-base')
        elif 'bert-base-multilingual-cased' in name:
            name = name.replace('bert-base-multilingual-cased', 'mbert-base')
        elif 'bert-large-portuguese-cased' in name:
            name = name.replace('bert-large-portuguese-cased', 'bertimbau-large')
        elif 'albertina-1b5-portuguese-ptbr-encoder' in name:
            name = name.replace('albertina-1b5-portuguese-ptbr-encoder', 'albertina-1b5-ptbr')
        
        # Handle Llama variants
        elif 'Llama-3.1-8B-llama31_classification_lora' in name:
            name = name.replace('Llama-3.1-8B-llama31_classification_lora', 'llama3.1-8b-lora')
        elif 'Llama-3.1-8B' in name:
            name = name.replace('Llama-3.1-8B', 'llama3.1-8b-lora')

        # Handle Tucano variants
        elif 'Tucano-2b4-Instruct-tucano_classification_lora' in name:
            name = name.replace('Tucano-2b4-Instruct-tucano_classification_lora', 'tucano2b4-lora')
        elif 'Tucano-2b4-Instruct' in name:
            name = name.replace('Tucano-2b4-Instruct', 'tucano2b4-lora')
        
        # Handle Phi variants
        elif 'Phi-3.5-mini-instruct-phi35_classification_lora' in name:
            name = name.replace('Phi-3.5-mini-instruct-phi35_classification_lora', 'phi3.5-mini-lora')
        elif 'Phi-3.5-mini-instruct' in name:
            name = name.replace('Phi-3.5-mini-instruct', 'phi3.5-mini-lora')
        elif 'phi-4-phi4_classification_lora' in name:
            name = name.replace('phi-4-phi4_classification_lora', 'phi4-lora')
        elif 'phi-4' in name:
            name = name.replace('phi-4', 'phi4-lora')
        
        # Clean up any remaining classification patterns
        name = name.replace('-encoder_classification', '')
        name = name.replace('_classification_lora', '')
        name = name.replace('-llama31', '')
        name = name.replace('-phi35', '')
        name = name.replace('-phi4', '')
        name = name.replace('-tucano', '')
        
        # Extract components and reorder
        parts = name.split('-')
        
        # Look for competency (C1-C5), context type, and LoRA rank
        competency = None
        context = None
        lora_rank = None
        model_parts = []
        
        i = 0
        while i < len(parts):
            part = parts[i]
            if part in ['C1', 'C2', 'C3', 'C4', 'C5']:
                competency = part
            elif part == 'essay_only':
                context = 'essay-only'
            elif part == 'full_context':
                context = 'full-context'
            elif part in ['essay', 'full'] and i + 1 < len(parts):
                # Handle split context names
                if parts[i+1] == 'only':
                    context = 'essay-only'
                    i += 1  # Skip next part
                elif parts[i+1] == 'context':
                    context = 'full-context'
                    i += 1  # Skip next part
            elif part in ['r8', 'r16']:
                lora_rank = part
            elif part and part not in ['only', 'context']:  # Skip empty parts and orphaned context words
                model_parts.append(part)
            i += 1
        
        # Reconstruct the name in the desired order: model-competency-context-rank
        new_parts = model_parts
        if competency:
            new_parts.append(competency)
        if context:
            new_parts.append(context)
        if lora_rank:
            new_parts.append(lora_rank)
            
        name = '-'.join(new_parts)
    
    # Final cleanup: remove any double dashes
    while '--' in name:
        name = name.replace('--', '-')
    
    return name

def find_and_group_csvs():
    base = Path(".")
    groups = {
        "evaluation_results": sorted(base.rglob("evaluation_results.csv")),
        "bootstrap_confidence_intervals": sorted(
            base.rglob("bootstrap_confidence_intervals.csv")
        ),
    }
    for name, paths in groups.items():
        logger.info(f"Found {len(paths)} files for '{name}'")
        if not paths:
            logger.warning(f"No files found for '{name}'")
    return groups


def enhance_evaluation_results(eval_df, csv_paths):
    """Enhance evaluation results with additional metrics from JSONL files."""
    enhanced_rows = []
    failed_count = 0

    # Create a mapping from row index to CSV path
    # Since we're processing multiple CSVs that get concatenated,
    # we need to track which rows came from which CSV file
    row_to_path = {}
    current_idx = 0

    for path in csv_paths:
        df = pd.read_csv(path)
        for i in range(len(df)):
            row_to_path[current_idx + i] = path
        current_idx += len(df)

    for idx, row in tqdm(
        eval_df.iterrows(), desc="Processing evaluation rows", total=len(eval_df)
    ):
        # Get the CSV path for this row
        csv_path = row_to_path.get(idx)

        if csv_path is None:
            error_msg = f"CSV file not found for row {idx}"
            logger.error(error_msg)
            failed_count += 1
            continue

        try:
            # Extract experiment ID from the path
            # The experiment ID is typically the parent directory name
            experiment_id = csv_path.parent.name
            
            # Simplify the experiment ID
            experiment_id = simplify_experiment_name(experiment_id)
            
            # Find corresponding JSONL file in the same directory
            jsonl_path = csv_path.parent / "inference_results.jsonl"
            if not jsonl_path.exists():
                # Try with experiment name prefix
                jsonl_files = list(csv_path.parent.glob("*_inference_results.jsonl"))
                if jsonl_files:
                    jsonl_path = jsonl_files[0]
                else:
                    raise FileNotFoundError(f"JSONL file not found in {csv_path.parent}")

            # Find log file to extract configuration
            log_files = list(csv_path.parent.glob("*run_inference_experiment.log"))
            if not log_files:
                raise FileNotFoundError(f"Log file not found in {csv_path.parent}")

            log_path = log_files[0]

            # Load inference results and compute metrics
            # Extract configuration from log file
            config_dict = extract_config_from_log(log_path)
            # Convert to OmegaConf DictConfig for compatibility with compute_metrics
            cfg = OmegaConf.create(config_dict)

            # Load data using the existing function
            grader_a_data, grader_b_data = load_inference_results_by_grader(jsonl_path)

            # Extract predictions and labels for each grader
            all_predictions_a = np.array(
                [data["prediction"] for data in grader_a_data.values()]
            )
            all_labels_a = np.array([data["label"] for data in grader_a_data.values()])
            all_predictions_b = np.array(
                [data["prediction"] for data in grader_b_data.values()]
            )
            all_labels_b = np.array([data["label"] for data in grader_b_data.values()])

            # Compute concat(A,B) metrics for verification
            # Concatenate predictions and labels from both graders
            concat_predictions = np.concatenate([all_predictions_a, all_predictions_b])
            concat_labels = np.concatenate([all_labels_a, all_labels_b])
            metrics_concat = compute_metrics((concat_predictions, concat_labels), cfg)

            # Verify that computed concat metrics match original CSV values
            # Check a few key metrics with some tolerance for floating point comparison
            tolerance = 1e-6
            for metric in ["accuracy", "QWK", "Macro_F1", "Weighted_F1"]:
                if metric in row and metric in metrics_concat:
                    original_value = row[metric]
                    computed_value = metrics_concat[metric]
                    # You can make this a hard assertion if needed:
                    assert abs(original_value - computed_value) <= tolerance, (
                        f"Metric {metric} mismatch: CSV={original_value}, Computed={computed_value}"
                    )

            # 1. Add original row with concat(A,B) metrics
            concat_row = row.copy()
            concat_row["experiment_id"] = experiment_id
            concat_row["metric_group"] = "concat(A,B)"
            enhanced_rows.append(concat_row)

            # 2. Compute metrics for A and B separately first
            metrics_a = compute_metrics((all_predictions_a, all_labels_a), cfg)
            metrics_b = compute_metrics((all_predictions_b, all_labels_b), cfg)

            # 3. Compute avg(A,B) as the average of metrics, not metrics of averaged predictions
            avg_row = row.copy()
            avg_row["experiment_id"] = experiment_id
            avg_row["metric_group"] = "avg(A,B)"
            # Average the metrics from A and B
            for metric in metrics_a:
                if metric in metrics_b and metric in avg_row:
                    avg_value = (metrics_a[metric] + metrics_b[metric]) / 2
                    avg_row[metric] = avg_value
            enhanced_rows.append(avg_row)

            # 4. Add onlyA metrics
            only_a_row = row.copy()
            only_a_row["experiment_id"] = experiment_id
            only_a_row["metric_group"] = "onlyA"
            # Update metric columns with onlyA values
            for metric, value in metrics_a.items():
                if metric in only_a_row:
                    only_a_row[metric] = value
            enhanced_rows.append(only_a_row)

            # 5. Add onlyB metrics
            only_b_row = row.copy()
            only_b_row["experiment_id"] = experiment_id
            only_b_row["metric_group"] = "onlyB"
            # Update metric columns with onlyB values
            for metric, value in metrics_b.items():
                if metric in only_b_row:
                    only_b_row[metric] = value
            enhanced_rows.append(only_b_row)

        except Exception as e:
            failed_count += 1
            error_msg = f"Failed to process {csv_path.parent if csv_path else 'unknown path'}: {str(e)}"
            logger.error(error_msg)
            # Log full traceback for debugging
            import traceback
            logger.error(f"Traceback:\n{traceback.format_exc()}")
            # Skip this row and continue with the next one
            continue

    logger.info(f"Successfully processed {len(enhanced_rows)//4} out of {len(eval_df)} rows")
    if failed_count > 0:
        logger.warning(f"Failed to process {failed_count} rows. Check error log: {error_log_file}")

    return pd.DataFrame(enhanced_rows)


def combine(paths, out_path):
    if not paths:
        logger.info(f"No files to combine for {out_path}")
        return

    logger.info(f"Combining {len(paths)} files into {out_path}")
    dfs = []
    
    for p in paths:
        df = pd.read_csv(p)
        
        # Add experiment_id column based on the parent directory name
        experiment_id = p.parent.name
        experiment_id = simplify_experiment_name(experiment_id)
        df["experiment_id"] = experiment_id
        
        dfs.append(df)

    # Basic schema validation
    cols = {tuple(df.columns) for df in dfs}
    if len(cols) > 1:
        error_msg = f"{out_path}: header mismatch across shards"
        logger.error(error_msg)
        raise ValueError(error_msg)

    combined = pd.concat(dfs, ignore_index=True)

    # Enhance evaluation results with additional metrics
    if "evaluation_results" in out_path:
        logger.info("Enhancing evaluation results with additional metrics...")
        combined = enhance_evaluation_results(combined, paths)

    combined.to_parquet(out_path, engine="pyarrow", index=False)
    logger.info(f"Successfully written {out_path} with {len(combined)} rows")


if __name__ == "__main__":
    logger.info(f"Starting parquet file creation. Logs will be saved to: {log_file}")
    logger.info(f"Error-only log will be saved to: {error_log_file}")
    
    groups = find_and_group_csvs()
    combine(groups["evaluation_results"], "evaluation_results-00000-of-00001.parquet")
    combine(
        groups["bootstrap_confidence_intervals"],
        "bootstrap_confidence_intervals-00000-of-00001.parquet",
    )
    
    logger.info("Parquet file creation completed")