--- configs: - config_name: small data_files: - split: train path: "train-small.parquet" - split: val path: "val-small.parquet" - split: test path: "test-small.parquet" default: true - config_name: large data_files: - split: train path: "train-large.parquet" - split: val path: "val-large.parquet" - split: test path: "test-large.parquet" --- # ExcelFormer Benchmark The datasets used in [ExcelFormer](https://arxiv.org/abs/2301.02819). The usage example is as follows: ```python from datasets import load_dataset import pandas as pd import numpy as np # process train split, similar to other splits data = {} datasets = load_dataset('jyansir/excelformer') # load 96 small-scale datasets in default # datasets = load_dataset('jyansir/excelformer', 'large') # load 21 large-scale datasets with specification dataset = datasets['train'].to_dict() for table_name, table, task in zip(dataset['dataset_name'], dataset['table'], dataset['task']): data[table_name] = { 'X_num': None if not table['X_num'] else pd.DataFrame.from_dict(table['X_num']), 'X_cat': None if not table['X_cat'] else pd.DataFrame.from_dict(table['X_cat']), 'y': np.array(table['y']), 'y_info': table['y_info'], 'task': task, } ```