Upload dataset.py with huggingface_hub
Browse files- dataset.py +233 -0
dataset.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from typing import *
|
6 |
+
from pathlib import Path
|
7 |
+
import re
|
8 |
+
import xarray as xr
|
9 |
+
import numpy as np
|
10 |
+
import h5py
|
11 |
+
|
12 |
+
|
13 |
+
IGRA_VARS = ['air_temperature', 'relative_humidity', 'wind_speed', 'geopotential_height', 'air_dewpoint_depression']
|
14 |
+
|
15 |
+
CLARA_VARS_D = {
|
16 |
+
'CFC': ['cfc'],
|
17 |
+
'CTO': ['ctt', 'cth', 'ctp'],
|
18 |
+
'IWP': ['iwp', 'cot_ice', 'cre_ice'],
|
19 |
+
'LWP': ['lwp', 'cot_liq', 'cre_liq']
|
20 |
+
}
|
21 |
+
|
22 |
+
CLARA_VARS = [value for values_list in CLARA_VARS_D.values() for value in values_list]
|
23 |
+
|
24 |
+
|
25 |
+
class ERA5Dataset(Dataset):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
size: Tuple[int] = (720, 1440),
|
29 |
+
window: int = 1,
|
30 |
+
flatten: bool = True,
|
31 |
+
mode: str = 'train'
|
32 |
+
) -> None:
|
33 |
+
|
34 |
+
self.size = size
|
35 |
+
self.window = window
|
36 |
+
self.flatten = flatten
|
37 |
+
self.mode = mode
|
38 |
+
self.data_dir = Path('.') / 'era5'
|
39 |
+
self.normalization_dir = Path('.') / 'era5' / 'stats_v0'
|
40 |
+
|
41 |
+
# Lazily load data
|
42 |
+
self.file_paths = list((self.data_dir / self.mode).glob('*.h5'))
|
43 |
+
self.file_paths.sort()
|
44 |
+
|
45 |
+
self.sample_indices = []
|
46 |
+
for file_idx, file_path in enumerate(self.file_paths):
|
47 |
+
h5_file = h5py.File(file_path, 'r')
|
48 |
+
num_samples = h5_file['fields'].shape[0]
|
49 |
+
self.sample_indices.extend([(file_idx, i) for i in range(num_samples)])
|
50 |
+
h5_file.close()
|
51 |
+
|
52 |
+
|
53 |
+
# Retrieve climatology to normalize
|
54 |
+
self.normalization_mean = np.load(self.normalization_dir / 'global_means.npy')
|
55 |
+
self.normalization_sigma = np.load(self.normalization_dir / 'global_stds.npy')
|
56 |
+
|
57 |
+
|
58 |
+
def _open_file(self, file_path, sample_idx):
|
59 |
+
h5_file = h5py.File(file_path, 'r')
|
60 |
+
sample = h5_file['fields'][sample_idx]
|
61 |
+
h5_file.close()
|
62 |
+
|
63 |
+
return sample[:, :self.size[0], :self.size[1]]
|
64 |
+
|
65 |
+
|
66 |
+
def __len__(self):
|
67 |
+
return len(self.sample_indices) - self.window + 1
|
68 |
+
|
69 |
+
|
70 |
+
def __getitem__(self, i):
|
71 |
+
step_indices = [target_idx for target_idx in range(i, i + self.window)]
|
72 |
+
|
73 |
+
x = list()
|
74 |
+
for step_idx in step_indices:
|
75 |
+
file_idx, sample_idx = self.sample_indices[step_idx]
|
76 |
+
x.append(self._open_file(self.file_paths[file_idx], sample_idx))
|
77 |
+
|
78 |
+
x = (x - self.normalization_mean) / self.normalization_sigma
|
79 |
+
x = torch.tensor(x).float()
|
80 |
+
|
81 |
+
if self.flatten:
|
82 |
+
return x.flatten(0, 1), {}
|
83 |
+
else:
|
84 |
+
return x, {}
|
85 |
+
|
86 |
+
|
87 |
+
class AuxDataset(Dataset):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
data_var: str = '',
|
91 |
+
size: Tuple[int] = (720, 1440),
|
92 |
+
window: int = 1,
|
93 |
+
flatten: bool = True,
|
94 |
+
mode: str = 'train'
|
95 |
+
) -> None:
|
96 |
+
|
97 |
+
assert data_var in ['igra', 'clara'], 'Dataset is not implemented, choose one of [igra, clara]'
|
98 |
+
|
99 |
+
self.data_var = data_var
|
100 |
+
self.size = size
|
101 |
+
self.window = window
|
102 |
+
self.flatten = flatten
|
103 |
+
self.mode = mode
|
104 |
+
|
105 |
+
self.data_dir = Path('.') / data_var
|
106 |
+
self.normalization_file = Path('.') / 'climatology' / f'climatology_{self.data_var}.zarr'
|
107 |
+
|
108 |
+
# Check if years specified are within valid bounds
|
109 |
+
if self.mode == 'train':
|
110 |
+
years = [str(year) for year in np.arange(2011,2016)]
|
111 |
+
elif self.mode == 'val':
|
112 |
+
years = [str(year) for year in np.arange(2016,2018)]
|
113 |
+
elif self.mode == 'test':
|
114 |
+
years = [str(year) for year in np.arange(2018,2019)]
|
115 |
+
else:
|
116 |
+
raise NotImplementedError('Mode is invalid, choose one of [train, val, test]')
|
117 |
+
|
118 |
+
# Subset files that match with patterns (eg. years specified)
|
119 |
+
self.EXTENSION = 'nc'
|
120 |
+
self.ENGINE = 'netcdf4'
|
121 |
+
self.PARAMS = IGRA_VARS if self.data_var == 'igra' else CLARA_VARS
|
122 |
+
|
123 |
+
file_paths = list()
|
124 |
+
for year in years:
|
125 |
+
pattern = rf'.*{year}\d{{4}}\.{self.EXTENSION}$'
|
126 |
+
curr_files = list(self.data_dir.glob(f'*{year}*.{self.EXTENSION}'))
|
127 |
+
file_paths.extend(
|
128 |
+
[f for f in curr_files if re.match(pattern, str(f.name)) and not self._is_leap(f.name)]
|
129 |
+
)
|
130 |
+
|
131 |
+
self.file_paths = file_paths
|
132 |
+
self.file_paths.sort()
|
133 |
+
|
134 |
+
# Lazily load data (i.e., igra has multiple (4; 6-hourly) timesteps in a daily file, while clara only has 1)
|
135 |
+
self.sample_indices = []
|
136 |
+
if data_var == 'igra':
|
137 |
+
self.sample_indices = [(file_idx, i) for file_idx in range(len(self.file_paths)) for i in range(4)]
|
138 |
+
|
139 |
+
else:
|
140 |
+
self.sample_indices = [(file_idx, 0) for file_idx in range(len(self.file_paths)) for i in range(4)]
|
141 |
+
|
142 |
+
# Retrieve climatology to normalize
|
143 |
+
self.normalization = xr.open_dataset(self.normalization_file, engine='zarr')
|
144 |
+
self.normalization = self.normalization.sel(param=self.PARAMS)
|
145 |
+
self.normalization_mean = self.normalization['mean'].values[np.newaxis, :, np.newaxis, np.newaxis]
|
146 |
+
self.normalization_sigma = self.normalization['sigma'].values[np.newaxis, :, np.newaxis, np.newaxis]
|
147 |
+
|
148 |
+
|
149 |
+
def _is_leap(self, filename):
|
150 |
+
"""FCN training data for ERA5 ignores leap day"""
|
151 |
+
match = re.search(r'(\d{4})(\d{2})(\d{2})', filename)
|
152 |
+
if match:
|
153 |
+
year, month, day = map(int, match.groups())
|
154 |
+
return month == 2 and day == 29
|
155 |
+
|
156 |
+
return False
|
157 |
+
|
158 |
+
def _open_file(self, file_path, sample_idx):
|
159 |
+
sample = xr.open_dataset(file_path, engine=self.ENGINE)
|
160 |
+
sample = sample[self.PARAMS]
|
161 |
+
sample = sample.sortby('lat', ascending=False) # aligned with FCN ERA5
|
162 |
+
sample = sample.roll(lon=len(sample.lon) // 2, roll_coords=True) # aligned with FCN ERA5
|
163 |
+
|
164 |
+
|
165 |
+
if self.data_var == 'igra':
|
166 |
+
|
167 |
+
# Some daily files do not have some snapshots in time; init an empty np.nan tensor instead
|
168 |
+
try:
|
169 |
+
sample = sample.isel(time=sample_idx).to_array().values
|
170 |
+
|
171 |
+
except:
|
172 |
+
sample = np.full((len(IGRA_VARS), self.size[0], self.size[1]), np.nan)
|
173 |
+
|
174 |
+
|
175 |
+
else:
|
176 |
+
sample = sample.to_array().values
|
177 |
+
|
178 |
+
return sample
|
179 |
+
|
180 |
+
|
181 |
+
def __len__(self):
|
182 |
+
return len(self.sample_indices) - self.window + 1
|
183 |
+
|
184 |
+
|
185 |
+
def __getitem__(self, i):
|
186 |
+
step_indices = [target_idx for target_idx in range(i, i + self.window)]
|
187 |
+
|
188 |
+
x = list()
|
189 |
+
for step_idx in step_indices:
|
190 |
+
file_idx, sample_idx = self.sample_indices[step_idx]
|
191 |
+
x.append(self._open_file(self.file_paths[file_idx], sample_idx))
|
192 |
+
|
193 |
+
x = (x - self.normalization_mean) / self.normalization_sigma
|
194 |
+
x = torch.tensor(x).float()
|
195 |
+
x = torch.nan_to_num(x)
|
196 |
+
|
197 |
+
if self.flatten:
|
198 |
+
return x.flatten(0, 1), {}
|
199 |
+
else:
|
200 |
+
return x, {}
|
201 |
+
|
202 |
+
|
203 |
+
class MultimodalDataset(Dataset):
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
datasets,
|
207 |
+
background: bool=False
|
208 |
+
):
|
209 |
+
self.datasets = datasets
|
210 |
+
self.is_flatten = datasets[0].flatten
|
211 |
+
|
212 |
+
# Handle variable future timestepping to generate background state
|
213 |
+
self.background = background
|
214 |
+
|
215 |
+
def __len__(self):
|
216 |
+
if self.background:
|
217 |
+
return len(self.datasets[0]) - 1 # lead_time = 1
|
218 |
+
else:
|
219 |
+
return len(self.datasets[0])
|
220 |
+
|
221 |
+
def __getitem__(self, idx):
|
222 |
+
dim = 0 if self.is_flatten else 1
|
223 |
+
x = [dataset[idx][0] for dataset in self.datasets]
|
224 |
+
x = torch.cat(x, dim=dim).float()
|
225 |
+
|
226 |
+
if self.background:
|
227 |
+
# Also return future lead_time as target y
|
228 |
+
y = [dataset[idx+1][0] for dataset in self.datasets]
|
229 |
+
y = torch.cat(y, dim=dim).float()
|
230 |
+
return x, y, {}
|
231 |
+
|
232 |
+
else:
|
233 |
+
return x, {}
|