File size: 10,818 Bytes
2617270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
license: apache-2.0
---
### Label info:
```
0: "fragment",
1: "statement",
2: "question",
3: "command",
4: "rhetorical question",
5: "rhetorical command",
6: "intonation-dependent utterance"
```
### Training process:
```
{'loss': 1.8008, 'grad_norm': 7.2770233154296875, 'learning_rate': 1e-05, 'epoch': 0.03}
{'loss': 0.894, 'grad_norm': 27.84651756286621, 'learning_rate': 2e-05, 'epoch': 0.06}
{'loss': 0.6504, 'grad_norm': 30.617990493774414, 'learning_rate': 3e-05, 'epoch': 0.09}
{'loss': 0.5939, 'grad_norm': 34.73934555053711, 'learning_rate': 4e-05, 'epoch': 0.12}
{'loss': 0.5786, 'grad_norm': 6.585583209991455, 'learning_rate': 5e-05, 'epoch': 0.15}
{'eval_loss': 0.5915874242782593, 'eval_accuracy': 0.8297766749379653, 'eval_f1': 0.8315132136625163, 'eval_precision': 0.8410462605264737, 'eval_recall': 0.8297766749379653, 'eval_runtime': 265.1144, 'eval_samples_per_second': 22.801, 'eval_steps_per_second': 1.426, 'epoch': 0.15}
{'loss': 0.5928, 'grad_norm': 10.66515064239502, 'learning_rate': 4.8276456394346784e-05, 'epoch': 0.18}
{'loss': 0.5611, 'grad_norm': 3.804234266281128, 'learning_rate': 4.655291278869355e-05, 'epoch': 0.21}
{'loss': 0.5151, 'grad_norm': 8.275078773498535, 'learning_rate': 4.4829369183040333e-05, 'epoch': 0.24}
{'loss': 0.4696, 'grad_norm': 2.44854474067688, 'learning_rate': 4.310582557738711e-05, 'epoch': 0.26}
{'loss': 0.5183, 'grad_norm': 8.534456253051758, 'learning_rate': 4.138228197173389e-05, 'epoch': 0.29}
{'eval_loss': 0.5429911017417908, 'eval_accuracy': 0.8415219189412738, 'eval_f1': 0.8231674368620022, 'eval_precision': 0.8383674385161947, 'eval_recall': 0.8415219189412738, 'eval_runtime': 268.1016, 'eval_samples_per_second': 22.547, 'eval_steps_per_second': 1.41, 'epoch': 0.29}
{'loss': 0.4802, 'grad_norm': 10.636425018310547, 'learning_rate': 3.965873836608066e-05, 'epoch': 0.32}
{'loss': 0.4877, 'grad_norm': 6.05213737487793, 'learning_rate': 3.793519476042744e-05, 'epoch': 0.35}
{'loss': 0.5093, 'grad_norm': 5.5984015464782715, 'learning_rate': 3.621165115477422e-05, 'epoch': 0.38}
{'loss': 0.496, 'grad_norm': 7.945780277252197, 'learning_rate': 3.4488107549120996e-05, 'epoch': 0.41}
{'loss': 0.5005, 'grad_norm': 5.778200626373291, 'learning_rate': 3.276456394346777e-05, 'epoch': 0.44}
{'eval_loss': 0.41184064745903015, 'eval_accuracy': 0.8684863523573201, 'eval_f1': 0.8635611747282996, 'eval_precision': 0.8629771033516368, 'eval_recall': 0.8684863523573201, 'eval_runtime': 270.0108, 'eval_samples_per_second': 22.388, 'eval_steps_per_second': 1.4, 'epoch': 0.44}
{'loss': 0.4436, 'grad_norm': 4.413114070892334, 'learning_rate': 3.1041020337814545e-05, 'epoch': 0.47}
{'loss': 0.4899, 'grad_norm': 18.563016891479492, 'learning_rate': 2.9317476732161327e-05, 'epoch': 0.5}
{'loss': 0.4637, 'grad_norm': 26.92985725402832, 'learning_rate': 2.7593933126508105e-05, 'epoch': 0.53}
{'loss': 0.4387, 'grad_norm': 7.494612693786621, 'learning_rate': 2.5870389520854876e-05, 'epoch': 0.56}
{'loss': 0.4401, 'grad_norm': 20.5152530670166, 'learning_rate': 2.4146845915201654e-05, 'epoch': 0.59}
{'eval_loss': 0.42229706048965454, 'eval_accuracy': 0.8663358147229115, 'eval_f1': 0.859666580414163, 'eval_precision': 0.8638930298685418, 'eval_recall': 0.8663358147229115, 'eval_runtime': 272.7465, 'eval_samples_per_second': 22.163, 'eval_steps_per_second': 1.386, 'epoch': 0.59}
{'loss': 0.4289, 'grad_norm': 10.1361665725708, 'learning_rate': 2.2423302309548433e-05, 'epoch': 0.62}
{'loss': 0.4193, 'grad_norm': 8.068666458129883, 'learning_rate': 2.0699758703895207e-05, 'epoch': 0.65}
{'loss': 0.4038, 'grad_norm': 8.713869094848633, 'learning_rate': 1.8976215098241985e-05, 'epoch': 0.68}
{'loss': 0.4073, 'grad_norm': 12.182595252990723, 'learning_rate': 1.7252671492588764e-05, 'epoch': 0.71}
{'loss': 0.4095, 'grad_norm': 13.43953800201416, 'learning_rate': 1.5529127886935542e-05, 'epoch': 0.74}
{'eval_loss': 0.3974127173423767, 'eval_accuracy': 0.8726220016542597, 'eval_f1': 0.8677290061110087, 'eval_precision': 0.8672987137526573, 'eval_recall': 0.8726220016542597, 'eval_runtime': 270.2975, 'eval_samples_per_second': 22.364, 'eval_steps_per_second': 1.398, 'epoch': 0.74}
{'loss': 0.3473, 'grad_norm': 16.423139572143555, 'learning_rate': 1.3805584281282317e-05, 'epoch': 0.76}
{'loss': 0.3982, 'grad_norm': 6.357703685760498, 'learning_rate': 1.2082040675629095e-05, 'epoch': 0.79}
{'loss': 0.3286, 'grad_norm': 4.977189064025879, 'learning_rate': 1.0358497069975871e-05, 'epoch': 0.82}
{'loss': 0.3712, 'grad_norm': 4.068944454193115, 'learning_rate': 8.634953464322648e-06, 'epoch': 0.85}
{'loss': 0.345, 'grad_norm': 6.266202926635742, 'learning_rate': 6.911409858669425e-06, 'epoch': 0.88}
{'eval_loss': 0.3740645945072174, 'eval_accuracy': 0.8822167080231597, 'eval_f1': 0.8780706451391699, 'eval_precision': 0.877925468669178, 'eval_recall': 0.8822167080231597, 'eval_runtime': 270.0795, 'eval_samples_per_second': 22.382, 'eval_steps_per_second': 1.4, 'epoch': 0.88}
{'loss': 0.4049, 'grad_norm': 10.76927375793457, 'learning_rate': 5.187866253016201e-06, 'epoch': 0.91}
{'loss': 0.3919, 'grad_norm': 12.331282615661621, 'learning_rate': 3.4643226473629783e-06, 'epoch': 0.94}
{'loss': 0.3576, 'grad_norm': 8.6154203414917, 'learning_rate': 1.7407790417097554e-06, 'epoch': 0.97}
{'loss': 0.3544, 'grad_norm': 10.01504135131836, 'learning_rate': 1.723543605653223e-08, 'epoch': 1.0}
{'train_runtime': 7076.4012, 'train_samples_per_second': 7.688, 'train_steps_per_second': 0.481, 'train_loss': 0.5087223172678522, 'epoch': 1.0}
100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3401/3401 [1:57:56<00:00, 2.08s/it]
Training completed. Model saved.
```
### Classification Report:
```
precision recall f1-score support
fragment 0.95 0.92 0.94 597
statement 0.84 0.91 0.87 1811
question 0.95 0.94 0.94 1786
command 0.88 0.91 0.90 1296
rhetorical question 0.73 0.62 0.67 174
rhetorical command 0.86 0.56 0.68 108
intonation-dependent utterance 0.57 0.38 0.46 273
accuracy 0.88 6045
macro avg 0.83 0.75 0.78 6045
weighted avg 0.88 0.88 0.88 6045
Predictions saved
```
### Train code:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import (
RobertaTokenizerFast,
RobertaForSequenceClassification,
Trainer,
TrainingArguments,
EarlyStoppingCallback
)
from datasets import Dataset
import torch
import numpy as np
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, classification_report
from tensorflow.python.keras.optimizer_v2.adam import Adam
# Load and prepare data
train_df = pd.read_csv("./train_fix_v1.csv")
test_df = pd.read_csv("./test_fix_v1.csv")
# Convert to Dataset objects
train_dataset = Dataset.from_pandas(train_df)
test_dataset = Dataset.from_pandas(test_df)
# Initialize tokenizer and model
model_name = "FacebookAI/roberta-base"
tokenizer = RobertaTokenizerFast.from_pretrained(model_name)
model = RobertaForSequenceClassification.from_pretrained(
model_name,
num_labels=7,
id2label={
0: "fragment",
1: "statement",
2: "question",
3: "command",
4: "rhetorical question",
5: "rhetorical command",
6: "intonation-dependent utterance"
},
label2id={
"fragment": 0,
"statement": 1,
"question": 2,
"command": 3,
"rhetorical question": 4,
"rhetorical command": 5,
"intonation-dependent utterance": 6
}
)
# Tokenize function
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
# Tokenize datasets
tokenized_train = train_dataset.map(tokenize_function, batched=True)
tokenized_test = test_dataset.map(tokenize_function, batched=True)
# Compute metrics function for evaluation
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}
# Training arguments
training_args = TrainingArguments(
output_dir="./roberta_base_stock",
num_train_epochs=1, # Ustawione na 10, ale z early stopping
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=100,
evaluation_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=500,
load_best_model_at_end=True,
metric_for_best_model="f1",
learning_rate=5e-05,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_test,
compute_metrics=compute_metrics,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
)
# Train the model
trainer.train()
# Save the fine-tuned model
model.save_pretrained("./roberta_base_stock")
tokenizer.save_pretrained("./roberta_base_stock")
print("Training completed. Model saved.")
# Evaluate the model on the test set
print("Evaluating model on test set...")
test_results = trainer.evaluate(tokenized_test)
print("Test set evaluation results:")
for key, value in test_results.items():
print(f"{key}: {value}")
# Perform predictions on the test set
test_predictions = trainer.predict(tokenized_test)
# Get predicted labels
predicted_labels = np.argmax(test_predictions.predictions, axis=1)
true_labels = test_predictions.label_ids
# Print classification report
print("\nClassification Report:")
print(classification_report(true_labels, predicted_labels,
target_names=model.config.id2label.values()))
# Optional: Save predictions to CSV
test_df['predicted_label'] = predicted_labels
test_df.to_csv("./roberta_base_stock/test_predictions.csv", index=False)
print("Predictions saved")
```
|