Datasets:

Modalities:
Tabular
Text
ArXiv:
Libraries:
Datasets
License:
File size: 3,698 Bytes
4b465b5
 
 
 
265465b
4b465b5
 
 
 
 
 
 
 
a8ea5b9
4b465b5
 
 
a8ea5b9
 
 
4b465b5
 
 
 
a8ea5b9
4b465b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8ea5b9
4b465b5
 
 
 
 
 
 
 
 
a8ea5b9
 
4b465b5
 
 
 
 
 
 
a8ea5b9
4b465b5
 
 
cd8df66
 
 
4b465b5
e13b873
 
 
265465b
e13b873
 
 
a8ea5b9
 
 
e13b873
 
 
 
a8ea5b9
e13b873
 
 
 
 
7eb3a8d
e13b873
 
 
 
 
 
 
a8ea5b9
e13b873
 
 
a8ea5b9
 
 
e13b873
4b465b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "_dev = pd.read_json(\"EN_dev_Anon.jsonl\", lines=True)\n",
    "_test = pd.read_json(\"EN_test_Anon.jsonl\", lines=True)\n",
    "_train = pd.read_json(\"EN_train_Anon.jsonl\", lines=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def process(df):\n",
    "    df = df.copy()\n",
    "    df.columns = df.columns.str.lower()\n",
    "    df[\"violated\"] = df.violated_articles.str.len() != 0\n",
    "    return df\n",
    "\n",
    "dev = process(_dev)\n",
    "test = process(_test)\n",
    "train = process(_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "d = {k: list(v) for k, v in train.groupby(\"violated\").indices.items()}\n",
    "dist = dict(dev.violated.value_counts().items())\n",
    "d_train = {k: v[0:dist[k]] for k, v in d.items()}\n",
    "d_remaining = {k: v[dist[k]:] for k, v in d.items()}\n",
    "\n",
    "new_rows = []\n",
    "for i in range(len(dev[\"violated\"])):\n",
    "    label = i % 2 == 0\n",
    "    new_rows.append(train.iloc[d_train[label].pop()])\n",
    "\n",
    "new_train = pd.concat([pd.DataFrame(new_rows), pd.DataFrame(train.iloc[i] for l in d_remaining.values() for i in l).sample(frac=1, random_state=42)])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "new_train.to_json(\"train.jsonl\", lines=True, orient=\"records\")\n",
    "test.to_json(\"test.jsonl\", lines=True, orient=\"records\")\n",
    "dev.to_json(\"dev.jsonl\", lines=True, orient=\"records\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "train = pd.read_json(\"data/train.jsonl\", lines=True, orient=\"records\")\n",
    "test = pd.read_json(\"data/test.jsonl\", lines=True, orient=\"records\")\n",
    "dev = pd.read_json(\"data/dev.jsonl\", lines=True, orient=\"records\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "\n",
    "number = re.compile(\"^([0-9]+|CARDINAL)\\s?\\. \")\n",
    "train[\"text\"] = train[\"text\"].map(lambda r: [re.sub(number, \"\", line) for line in r])\n",
    "test[\"text\"] = test[\"text\"].map(lambda r: [re.sub(number, \"\", line) for line in r])\n",
    "dev[\"text\"] = dev[\"text\"].map(lambda r: [re.sub(number, \"\", line) for line in r])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "train.to_json(\"data/train.jsonl\", lines=True, orient=\"records\")\n",
    "test.to_json(\"data/test.jsonl\", lines=True, orient=\"records\")\n",
    "dev.to_json(\"data/dev.jsonl\", lines=True, orient=\"records\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.10.5 64-bit",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.5"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "e7370f93d1d0cde622a1f8e1c04877d8463912d04d973331ad4851f04de6915a"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}