VidDiffBench / load_viddiff_dataset.py
jmhb's picture
Update load_viddiff_dataset.py
d48be72 verified
import ipdb
import pdb
import os
import numpy as np
import json
import re
from PIL import Image
from pathlib import Path
from datasets import load_dataset
import decord
from tqdm import tqdm
import logging
import hashlib
def load_viddiff_dataset(splits=["easy"], subset_mode="0", cache_dir=None, test_new=False):
"""
splits in ['easy', 'medium', 'hard']
"""
if not test_new:
dataset = load_dataset("viddiff/VidDiffBench_2", cache_dir=cache_dir)
dataset = dataset['test']
valid_splits = set(dataset['split'])
else:
dataset = load_dataset("viddiff/VidDiffBench_2", cache_dir=cache_dir)
dataset = dataset['test']
dataset = dataset.map(lambda example: example.update({'split': example['domain']}) or example)
valid_splits = set(dataset['split'])
def _filter_splits(example):
return example["split"] in splits
dataset = dataset.filter(_filter_splits)
if len(dataset) == 0:
raise ValueError(
f"Dataset empty for splits {splits}. Valid splits {valid_splits}")
def _map_elements_to_json(example):
example["videos"] = json.loads(example["videos"])
example["differences_annotated"] = json.loads(
example["differences_annotated"])
example["differences_gt"] = json.loads(example["differences_gt"])
return example
dataset = dataset.map(_map_elements_to_json)
# dataset = dataset.map(_clean_annotations)
dataset = apply_subset_mode(dataset, subset_mode)
return dataset
def load_all_videos(dataset,
cache=True,
cache_dir="cache/cache_data",
overwrite_cache=False,
test_samevideo=0,
test_flipvids=0,
do_tqdm=True):
"""
Return a 2-element tuple. Each element is a list of length len(datset).
First list is video A for each datapoint as a dict with elements
path: original path to video
fps: frames per second
video: numpy array of the video shape (nframes,H,W,3)
Second list is the same but for video B.
Args:
cache_dir (str): Directory to store cached video data. Defaults to "cache/cache_data"
"""
all_videos = ([], [])
# make iterator, with or without tqdm based on `do_tqdm`
if do_tqdm:
it = tqdm(dataset)
else:
it = dataset
# load each video
for row in it:
videos = get_video_data(row['videos'],
cache=cache,
cache_dir=cache_dir,
overwrite_cache=overwrite_cache)
video0, video1 = videos[0], videos[1]
if test_flipvids:
video0, video1 = video1, video0
if not test_samevideo:
all_videos[0].append(video0)
all_videos[1].append(video1)
else:
all_videos[0].append(video1)
all_videos[1].append(video1)
return all_videos
def _clean_annotations(example):
# Not all differences in the taxonomy may have a label available, so filter them.
differences_gt_labeled = {
k: v
for k, v in example['differences_gt'].items() if v is not None
}
differences_annotated = {
k: v
for k, v in example['differences_annotated'].items()
if k in differences_gt_labeled.keys()
}
# Directly assign to the example without deepcopy
example['differences_gt'] = differences_gt_labeled
example['differences_annotated'] = differences_annotated
return example
def get_video_data(videos: dict, cache=True, cache_dir="cache/cache_data", overwrite_cache=False):
"""
Pass in the videos dictionary from the dataset, like dataset[idx]['videos'].
Load the 2 videos represented as numpy arrays.
By default, cache the arrays ... so the second time through, the dataset
loading will be faster.
returns: video0, video1
"""
video_dicts = []
for i in [0, 1]:
path = videos[i]['path']
assert Path(path).exists(
), f"Video not downloaded [{path}]\nCheck dataset README about downloading videos"
frames_trim = slice(*videos[i]['frames_trim'])
video_dict = videos[i].copy()
if cache:
dir_cache = Path(cache_dir)
dir_cache.mkdir(exist_ok=True, parents=True)
hash_key = get_hash_key(path + str(frames_trim))
memmap_filename = dir_cache / f"memmap_{hash_key}.npy"
# if not in the cache, and not overwriting, then get OG video
if os.path.exists(memmap_filename) and not overwrite_cache:
video_info = np.load(f"{memmap_filename}.info.npy",
allow_pickle=True).item()
video = np.memmap(memmap_filename,
dtype=video_info['dtype'],
mode='r',
shape=video_info['shape'])
video_dict['video'] = video
video_dict['fps'] = video_dict['fps_original'] # since we don't downsample here
video_dicts.append(video_dict)
continue
is_dir = Path(path).is_dir()
if is_dir:
video = _load_video_from_directory_of_images(
path, frames_trim=frames_trim)
else:
assert Path(path).suffix in (".mp4", ".mov")
video, fps = _load_video(path, frames_trim=frames_trim)
assert fps == videos[i]['fps_original']
if cache:
np.save(f"{memmap_filename}.info.npy", {
'shape': video.shape,
'dtype': video.dtype
})
memmap = np.memmap(memmap_filename,
dtype=video.dtype,
mode='w+',
shape=video.shape)
memmap[:] = video[:]
memmap.flush()
video = memmap
video_dict['video'] = video
video_dict['fps'] = video_dict['fps_original']
video_dicts.append(video_dict)
return video_dicts
def _load_video(f, return_fps=True, frames_trim: slice = None) -> np.ndarray:
"""
mp4 video to frames numpy array shape (N,H,W,3).
Do not use for long videos
frames_trim: (s,e) is start and end int frames to include (warning, the range
is inclusive, unlike in list indexing.)
"""
vid = decord.VideoReader(str(f))
fps = vid.get_avg_fps()
if len(vid) > 50000:
raise ValueError(
"Video probably has too many frames to convert to a numpy")
if frames_trim is None:
frames_trim = slice(0, None, None)
video_np = vid[frames_trim].asnumpy()
if not return_fps:
return video_np
else:
assert fps > 0
return video_np, fps
def _load_video_from_directory_of_images(
path_dir: str,
frames_trim: slice = None,
downsample_time: int = None,
) -> np.ndarray:
"""
`path_dir` is a directory path with images that, when arranged in alphabetical
order, make a video.
This function returns the a numpy array shape (N,H,W,3) where N is the
number of frames.
"""
files = sorted(os.listdir(path_dir))
if frames_trim is not None:
files = files[frames_trim]
if downsample_time is not None:
files = files[::downsample_time]
files = [f"{path_dir}/{f}" for f in files]
images = [Image.open(f) for f in files]
video_array = np.stack(images)
return video_array
def _subsample_video(video: np.ndarray,
fps_original: int,
fps_target: int,
fps_warning: bool = True):
"""
video: video as numby array (nframes, h, w, 3)
fps_original: original fps of the video
fps_target: target fps to downscale to
fps_warning: if True, then log warnings to logger if the target fps is
higher than original fps, or if the target fps isn't possible because
it isn't divisible by the original fps.
"""
subsample_time = fps_original / fps_target
if subsample_time < 1 and fps_warning:
logging.warning(f"Trying to subsample frames to fps {fps_target}, which "\
"is higher than the fps of the original video which is "\
"{video['fps']}. The video fps won't be changed for {video['path']}. "\
f"\nSupress this warning by setting config fps_warning=False")
return video, fps_original, 1
subsample_time_int = int(subsample_time)
fps_new = int(fps_original / subsample_time_int)
if fps_new != fps_target and fps_warning:
logging.warning(f"Config lmm.fps='{fps_target}' but the original fps is {fps_original} " \
f"so we downscale to fps {fps_new} instead. " \
f"\nSupress this warning by setting config fps_warning=False")
video = video[::subsample_time_int]
return video, fps_new, subsample_time_int
def downsample_videos(dataset, videos, args_fps_inference, fps_warning=True):
"""To fix some hacky - oOnly called by viddiff_method.run_viddiff.py """
for i in range(len(dataset)):
row = dataset[i]
domain = row['domain']
fps_inference = args_fps_inference[domain]
video0, video1 = videos[0][i], videos[1][i]
for video in (video0, video1):
video['video'], fps_new, subsample_time_int = _subsample_video(
video['video'], video['fps_original'], fps_inference, fps_warning)
video['fps'] = fps_new
return videos
def apply_subset_mode(dataset, subset_mode):
"""
For example if subset_mode is "3_per_action" then just get the first 3 rows
for each unique action.
Useful for working with subsets.
"""
match = re.match(r"(\d+)_per_action", subset_mode)
if match:
instances_per_action = int(match.group(1))
action_counts = {}
subset_indices = []
for idx, example in enumerate(dataset):
action = example['action']
if action not in action_counts:
action_counts[action] = 0
if action_counts[action] < instances_per_action:
subset_indices.append(idx)
action_counts[action] += 1
return dataset.select(subset_indices)
else:
return dataset
def get_hash_key(key: str) -> str:
return hashlib.sha256(key.encode()).hexdigest()
def dataset_metrics(dataset):
import pandas as pd
df = pd.DataFrame(dataset)
print("Number of actions ")
print(df.groupby(['split'])['action'].nunique())
print("Total actions", df['action'].nunique())
print("Samples by category")
print(df.groupby(["split"])['split'].count())
print("Total ", len(df))
print()
diffs = []
for row in dataset:
diff = {
k: v
for k, v in row['differences_gt'].items() if v is not None
}
diffs.append(diff)
cnts = [len(d) for d in diffs]
df['variation_cnts'] = cnts
print("Variation counts by category")
print(df.groupby(['split'])['variation_cnts'].sum())
print("total ", df['variation_cnts'].sum())
print()
if __name__ == "__main__":
# these are the 3 data loading commands
splits = ['ballsports', 'fitness', 'diving', 'music', 'surgery']
dataset = load_viddiff_dataset(splits=splits)
metrics = dataset_metrics(dataset)
videos = load_all_videos(dataset)
n_differences = lvd.get_n_differences(dataset, "data/n_differences.json")