fever-span-annotated / fever-span-annotated.py
isacat's picture
Update fever-span-annotated.py
0d6bb54 verified
raw
history blame
2.69 kB
import gzip
import pandas as pd
import datasets
from datasets import DatasetInfo, GeneratorBasedBuilder, SplitGenerator, Split
import csv
from itertools import islice
class FeverDataset(GeneratorBasedBuilder):
VERSION = "1.0.0"
def _info(self):
return DatasetInfo(
description="FEVER Dataset with span annotations.",
features=datasets.Features({
"query": datasets.Value("string"),
"document": datasets.Value("string"),
"spans": datasets.Value("string"),
}),
supervised_keys=None,
homepage="https://huggingface.co/datasets/jinaai/fever-span-annotated",
license="CC BY 4.0",
splits={
"test": {"num_bytes": 0}, # Placeholder, will be updated later
},
dataset_size=0,
download_size=0
)
def _download_and_prepare(self, dl_manager, **kwargs):
# Define the URLs for the dataset files
urls = [
"https://huggingface.co/datasets/jinaai/fever-span-annotated/resolve/main/data/fever-pairs_shard_000000.tsv.gz",
"https://huggingface.co/datasets/jinaai/fever-span-annotated/resolve/main/data/fever-pairs_shard_000001.tsv.gz",
"https://huggingface.co/datasets/jinaai/fever-span-annotated/resolve/main/data/fever-pairs_shard_000002.tsv.gz",
"https://huggingface.co/datasets/jinaai/fever-span-annotated/resolve/main/data/fever-pairs_shard_000003.tsv.gz",
"https://huggingface.co/datasets/jinaai/fever-span-annotated/resolve/main/data/fever-pairs_shard_000004.tsv.gz",
]
# Download the files using the dl_manager
downloaded_files = dl_manager.download(urls)
# Set the file paths for the split generators
self.file_paths = downloaded_files
def _split_generators(self, dl_manager):
return [
SplitGenerator(
name=Split.TEST,
gen_kwargs={"file_paths": self.file_paths},
),
]
def _generate_examples(self, file_paths):
for file_path in file_paths:
with gzip.open(file_path, 'rt') as file:
reader = csv.reader(
file,
dialect='excel-tab' if self._dialect == 'tsv' else 'excel',
)
for row in islice(reader, self._current_index, None, self._stride):
if len(row) >= 3:
yield row[0], {
"query": row[0],
"document": row[1],
"spans": row[2],
}