Update imagenette.py
Browse files- imagenette.py +141 -96
imagenette.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
from pathlib import Path
|
3 |
|
4 |
import datasets
|
@@ -15,117 +16,161 @@ _CITATION = """
|
|
15 |
"""
|
16 |
|
17 |
_DESCRIPTION = """\
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
23 |
This version of the dataset allows researchers/practitioners to quickly try out
|
24 |
ideas and share with others. The dataset comes in three variants:
|
25 |
* Full size
|
26 |
* 320 px
|
27 |
* 160 px
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
|
32 |
-
_LABELS_FNAME = "image_classification/imagenette_labels.txt"
|
33 |
_URL_PREFIX = "https://s3.amazonaws.com/fast-ai-imageclas/"
|
34 |
|
35 |
-
|
36 |
-
"
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
class ImagenetteConfig(datasets.BuilderConfig):
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
"
|
61 |
-
|
62 |
-
|
63 |
|
64 |
|
65 |
def _make_builder_configs():
|
66 |
-
|
67 |
-
for base in ["imagenette2", "imagenette"]:
|
68 |
-
for size in ["full-size", "320px", "160px"]:
|
69 |
-
configs.append(ImagenetteConfig(base=base, size=size))
|
70 |
-
return configs
|
71 |
|
72 |
|
73 |
class Imagenette(datasets.GeneratorBasedBuilder):
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
from pathlib import Path
|
4 |
|
5 |
import datasets
|
|
|
16 |
"""
|
17 |
|
18 |
_DESCRIPTION = """\
|
19 |
+
# ImageNette
|
20 |
+
|
21 |
+
Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).
|
22 |
+
|
23 |
+
'Imagenette' is pronounced just like 'Imagenet', except with a corny inauthentic French accent.
|
24 |
+
If you've seen Peter Sellars in The Pink Panther, then think something like that.
|
25 |
+
It's important to ham up the accent as much as possible, otherwise people might not be sure whether you're refering to "Imagenette" or "Imagenet".
|
26 |
+
(Note to native French speakers: to avoid confusion, be sure to use a corny inauthentic American accent when saying "Imagenet".
|
27 |
+
Think something like the philosophy restaurant skit from Monty Python's The Meaning of Life.)
|
28 |
+
|
29 |
This version of the dataset allows researchers/practitioners to quickly try out
|
30 |
ideas and share with others. The dataset comes in three variants:
|
31 |
* Full size
|
32 |
* 320 px
|
33 |
* 160 px
|
34 |
+
|
35 |
+
The '320 px' and '160 px' versions have their shortest side resized to that size, with their aspect ratio maintained.
|
36 |
+
|
37 |
+
|
38 |
+
Too easy for you? In that case, you might want to try Imagewoof.
|
39 |
+
|
40 |
+
# Imagewoof
|
41 |
+
Imagewoof is a subset of 10 classes from Imagenet that aren't so easy to classify, since they're all dog breeds.
|
42 |
+
The breeds are: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog.
|
43 |
+
(No we will not enter in to any discussion in to whether a dingo is in fact a dog.
|
44 |
+
Any suggestions to the contrary are un-Australian. Thank you for your cooperation.)
|
45 |
+
|
46 |
+
Full size download;
|
47 |
+
320 px download;
|
48 |
+
160 px download.
|
49 |
"""
|
50 |
|
|
|
51 |
_URL_PREFIX = "https://s3.amazonaws.com/fast-ai-imageclas/"
|
52 |
|
53 |
+
_LABELS = {
|
54 |
+
"imagenette": [
|
55 |
+
"cassette_player",
|
56 |
+
"chain_saw",
|
57 |
+
"church",
|
58 |
+
"English_springer",
|
59 |
+
"French_horn",
|
60 |
+
"garbage_truck",
|
61 |
+
"gas_pump",
|
62 |
+
"golf_ball",
|
63 |
+
"parachute",
|
64 |
+
"tench",
|
65 |
+
],
|
66 |
+
"imagewoof": [
|
67 |
+
"Australian_terrier",
|
68 |
+
"beagle",
|
69 |
+
"Border_terrier",
|
70 |
+
"dingo",
|
71 |
+
"English_foxhound",
|
72 |
+
"golden_retriever",
|
73 |
+
"Old_English_sheepdog",
|
74 |
+
"Rhodesian_ridgeback",
|
75 |
+
"Samoyed",
|
76 |
+
"Shih-Tzu",
|
77 |
+
],
|
78 |
+
}
|
79 |
+
|
80 |
+
|
81 |
+
_NAME_TO_DIR = {
|
82 |
+
"imagenette-full-res": "imagenette2",
|
83 |
+
"imagenette-320px": "imagenette2-320",
|
84 |
+
"imagenette-160px": "imagenette2-160",
|
85 |
+
"imagewoof-full-res": "imagewoof2",
|
86 |
+
"imagewoof-320px": "imagewoof2-320",
|
87 |
+
"imagewoof-160px": "imagewoof2-160",
|
88 |
+
}
|
89 |
+
|
90 |
|
91 |
class ImagenetteConfig(datasets.BuilderConfig):
|
92 |
+
"""BuilderConfig for Imagenette."""
|
93 |
+
|
94 |
+
def __init__(self, name, **kwargs):
|
95 |
+
super(ImagenetteConfig, self).__init__(
|
96 |
+
name=name, description="{} version.".format(name), **kwargs
|
97 |
+
)
|
98 |
+
|
99 |
+
self.dataset = name.split("-")[0]
|
100 |
+
self.labels = _LABELS[self.dataset]
|
101 |
+
self.name = name
|
102 |
+
|
103 |
+
with open("imagenet_refs.json", "r") as f:
|
104 |
+
self.imagenet_refs = json.load(f)
|
105 |
+
self.ref_to_labels = {}
|
106 |
|
107 |
|
108 |
def _make_builder_configs():
|
109 |
+
return [ImagenetteConfig(name) for name in _NAME_TO_DIR]
|
|
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
class Imagenette(datasets.GeneratorBasedBuilder):
|
113 |
+
"""A smaller subset of 10 easily classified classes from Imagenet."""
|
114 |
+
|
115 |
+
VERSION = datasets.Version("1.0.0")
|
116 |
+
|
117 |
+
BUILDER_CONFIGS = _make_builder_configs()
|
118 |
+
|
119 |
+
def _info(self):
|
120 |
+
return datasets.DatasetInfo(
|
121 |
+
# builder=self,
|
122 |
+
description=_DESCRIPTION,
|
123 |
+
features=datasets.Features(
|
124 |
+
{
|
125 |
+
"image": datasets.Image(),
|
126 |
+
"labels": datasets.ClassLabel(names=self.config.labels),
|
127 |
+
}
|
128 |
+
),
|
129 |
+
supervised_keys=("path", "labels"),
|
130 |
+
homepage="https://github.com/fastai/imagenette",
|
131 |
+
citation=_CITATION,
|
132 |
+
task_templates=[
|
133 |
+
ImageClassification(
|
134 |
+
image_column="path",
|
135 |
+
label_column="labels",
|
136 |
)
|
137 |
+
],
|
138 |
+
)
|
139 |
+
|
140 |
+
def _split_generators(self, dl_manager):
|
141 |
+
"""Returns SplitGenerators."""
|
142 |
+
print(self.__dict__.keys())
|
143 |
+
print(self.config)
|
144 |
+
name = self.config.name
|
145 |
+
dirname = _NAME_TO_DIR[name]
|
146 |
+
url = _URL_PREFIX + "{}.tgz".format(dirname)
|
147 |
+
path = dl_manager.download_and_extract(url)
|
148 |
+
train_path = os.path.join(path, dirname, "train")
|
149 |
+
val_path = os.path.join(path, dirname, "val")
|
150 |
+
assert os.path.exists(train_path)
|
151 |
+
return [
|
152 |
+
datasets.SplitGenerator(
|
153 |
+
name=datasets.Split.TRAIN,
|
154 |
+
gen_kwargs={
|
155 |
+
"datapath": train_path,
|
156 |
+
},
|
157 |
+
),
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.VALIDATION,
|
160 |
+
gen_kwargs={
|
161 |
+
"datapath": val_path,
|
162 |
+
},
|
163 |
+
),
|
164 |
+
]
|
165 |
+
|
166 |
+
def _generate_examples(self, datapath):
|
167 |
+
"""Yields examples."""
|
168 |
+
imagenet_refs = self.config.imagenet_refs
|
169 |
+
for path in Path(datapath).glob("**/*.JPEG"):
|
170 |
+
record = {
|
171 |
+
# In Imagenette, the parent folder of the file is
|
172 |
+
# the imagenet reference to the label name.
|
173 |
+
"image": str(path),
|
174 |
+
"labels": imagenet_refs[path.parent.name],
|
175 |
+
}
|
176 |
+
yield path.name, record
|