|
import os |
|
import json |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """ |
|
@misc{imagenette, |
|
author = "Jeremy Howard", |
|
title = "imagenette", |
|
url = "https://github.com/fastai/imagenette/" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
# ImageNette |
|
|
|
Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute). |
|
|
|
'Imagenette' is pronounced just like 'Imagenet', except with a corny inauthentic French accent. |
|
If you've seen Peter Sellars in The Pink Panther, then think something like that. |
|
It's important to ham up the accent as much as possible, otherwise people might not be sure whether you're refering to "Imagenette" or "Imagenet". |
|
(Note to native French speakers: to avoid confusion, be sure to use a corny inauthentic American accent when saying "Imagenet". |
|
Think something like the philosophy restaurant skit from Monty Python's The Meaning of Life.) |
|
|
|
This version of the dataset allows researchers/practitioners to quickly try out |
|
ideas and share with others. The dataset comes in three variants: |
|
* Full size |
|
* 320 px |
|
* 160 px |
|
|
|
The '320 px' and '160 px' versions have their shortest side resized to that size, with their aspect ratio maintained. |
|
|
|
|
|
Too easy for you? In that case, you might want to try Imagewoof. |
|
|
|
# Imagewoof |
|
Imagewoof is a subset of 10 classes from Imagenet that aren't so easy to classify, since they're all dog breeds. |
|
The breeds are: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog. |
|
(No we will not enter in to any discussion in to whether a dingo is in fact a dog. |
|
Any suggestions to the contrary are un-Australian. Thank you for your cooperation.) |
|
|
|
Full size download; |
|
320 px download; |
|
160 px download. |
|
""" |
|
|
|
_URL_PREFIX = "https://s3.amazonaws.com/fast-ai-imageclas/" |
|
_URL_IMAGENET_REFS = 'https://huggingface.co/datasets/jerpint/imagenette/raw/main/imagenet_refs.json' |
|
|
|
_LABELS = { |
|
"imagenette": [ |
|
"cassette_player", |
|
"chain_saw", |
|
"church", |
|
"English_springer", |
|
"French_horn", |
|
"garbage_truck", |
|
"gas_pump", |
|
"golf_ball", |
|
"parachute", |
|
"tench", |
|
], |
|
"imagewoof": [ |
|
"Australian_terrier", |
|
"beagle", |
|
"Border_terrier", |
|
"dingo", |
|
"English_foxhound", |
|
"golden_retriever", |
|
"Old_English_sheepdog", |
|
"Rhodesian_ridgeback", |
|
"Samoyed", |
|
"Shih-Tzu", |
|
], |
|
} |
|
|
|
|
|
_NAME_TO_DIR = { |
|
"imagenette-full-res": "imagenette2", |
|
"imagenette-320px": "imagenette2-320", |
|
"imagenette-160px": "imagenette2-160", |
|
"imagewoof-full-res": "imagewoof2", |
|
"imagewoof-320px": "imagewoof2-320", |
|
"imagewoof-160px": "imagewoof2-160", |
|
} |
|
|
|
|
|
class ImagenetteConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Imagenette.""" |
|
|
|
def __init__(self, name, **kwargs): |
|
super(ImagenetteConfig, self).__init__( |
|
name=name, description="{} version.".format(name), **kwargs |
|
) |
|
|
|
self.dataset = name.split("-")[0] |
|
self.labels = _LABELS[self.dataset] |
|
self.name = name |
|
|
|
|
|
|
|
def _make_builder_configs(): |
|
return [ImagenetteConfig(name) for name in _NAME_TO_DIR] |
|
|
|
|
|
class Imagenette(datasets.GeneratorBasedBuilder): |
|
"""A smaller subset of 10 easily classified classes from Imagenet.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = _make_builder_configs() |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"labels": datasets.ClassLabel(names=self.config.labels), |
|
} |
|
), |
|
supervised_keys=("path", "labels"), |
|
homepage="https://github.com/fastai/imagenette", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
print(self.__dict__.keys()) |
|
print(self.config) |
|
name = self.config.name |
|
dirname = _NAME_TO_DIR[name] |
|
|
|
|
|
|
|
refs_path = dl_manager.download(_URL_IMAGENET_REFS) |
|
with open(refs_path) as f: |
|
self.ref_to_label = json.load(f) |
|
|
|
|
|
url = _URL_PREFIX + "{}.tgz".format(dirname) |
|
path = dl_manager.download_and_extract(url) |
|
train_path = os.path.join(path, dirname, "train") |
|
val_path = os.path.join(path, dirname, "val") |
|
assert os.path.exists(train_path) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"datapath": train_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"datapath": val_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, datapath): |
|
"""Yields examples.""" |
|
|
|
for path in Path(datapath).glob("**/*.JPEG"): |
|
record = { |
|
|
|
|
|
"image": str(path), |
|
"labels": self.ref_to_label[path.parent.name], |
|
} |
|
yield path.name, record |
|
|