Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1K - 10K
License:
Commit
·
abd0271
1
Parent(s):
ebb85ce
add file
Browse files- README.md +151 -0
- dataset_infos.json +1 -0
- semeval-absa.py +143 -0
README.md
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- found
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license:
|
9 |
+
- cc-by-4.0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
pretty_name: 'SemEval 2015: Aspect-based Sentiement Analysis'
|
13 |
+
size_categories:
|
14 |
+
- 1K<n<10K
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
tags:
|
18 |
+
- aspect-based-sentiment-analysis
|
19 |
+
- semeval
|
20 |
+
- semeval2015
|
21 |
+
task_categories:
|
22 |
+
- text-classification
|
23 |
+
task_ids:
|
24 |
+
- sentiment-classification
|
25 |
+
---
|
26 |
+
|
27 |
+
# Dataset Card for SemEval Task 5: Aspect-based Sentiment Analysis
|
28 |
+
|
29 |
+
## Table of Contents
|
30 |
+
- [Table of Contents](#table-of-contents)
|
31 |
+
- [Dataset Description](#dataset-description)
|
32 |
+
- [Dataset Summary](#dataset-summary)
|
33 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
34 |
+
- [Languages](#languages)
|
35 |
+
- [Dataset Structure](#dataset-structure)
|
36 |
+
- [Data Instances](#data-instances)
|
37 |
+
- [Data Fields](#data-fields)
|
38 |
+
- [Data Splits](#data-splits)
|
39 |
+
- [Dataset Creation](#dataset-creation)
|
40 |
+
- [Curation Rationale](#curation-rationale)
|
41 |
+
- [Source Data](#source-data)
|
42 |
+
- [Annotations](#annotations)
|
43 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
44 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
45 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
46 |
+
- [Discussion of Biases](#discussion-of-biases)
|
47 |
+
- [Other Known Limitations](#other-known-limitations)
|
48 |
+
- [Additional Information](#additional-information)
|
49 |
+
- [Dataset Curators](#dataset-curators)
|
50 |
+
- [Licensing Information](#licensing-information)
|
51 |
+
- [Citation Information](#citation-information)
|
52 |
+
- [Contributions](#contributions)
|
53 |
+
|
54 |
+
## Dataset Description
|
55 |
+
|
56 |
+
- **Homepage:**
|
57 |
+
- **Repository:**
|
58 |
+
- **Paper:**
|
59 |
+
- **Leaderboard:**
|
60 |
+
- **Point of Contact:**
|
61 |
+
|
62 |
+
### Dataset Summary
|
63 |
+
|
64 |
+
This dataset is orignally from [SemEval-2015 Task 12](https://alt.qcri.org/semeval2015/task12/).
|
65 |
+
From the page:
|
66 |
+
> SE-ABSA15 will focus on the same domains as SE-ABSA14 (restaurants and laptops). However, unlike SE-ABSA14, the input datasets of SE-ABSA15 will contain entire reviews, not isolated (potentially out of context) sentences. SE-ABSA15 consolidates the four subtasks of SE-ABSA14 within a unified framework. In addition, SE-ABSA15 will include an out-of-domain ABSA subtask, involving test data from a domain unknown to the participants, other than the domains that will be considered during training. In particular, SE-ABSA15 consists of the following two subtasks.
|
67 |
+
|
68 |
+
|
69 |
+
### Supported Tasks and Leaderboards
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
### Languages
|
74 |
+
|
75 |
+
[More Information Needed]
|
76 |
+
|
77 |
+
## Dataset Structure
|
78 |
+
|
79 |
+
### Data Instances
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Data Fields
|
84 |
+
|
85 |
+
[More Information Needed]
|
86 |
+
|
87 |
+
### Data Splits
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
## Dataset Creation
|
92 |
+
|
93 |
+
### Curation Rationale
|
94 |
+
|
95 |
+
[More Information Needed]
|
96 |
+
|
97 |
+
### Source Data
|
98 |
+
|
99 |
+
#### Initial Data Collection and Normalization
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
#### Who are the source language producers?
|
104 |
+
|
105 |
+
[More Information Needed]
|
106 |
+
|
107 |
+
### Annotations
|
108 |
+
|
109 |
+
#### Annotation process
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
#### Who are the annotators?
|
114 |
+
|
115 |
+
[More Information Needed]
|
116 |
+
|
117 |
+
### Personal and Sensitive Information
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
## Considerations for Using the Data
|
122 |
+
|
123 |
+
### Social Impact of Dataset
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Discussion of Biases
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
### Other Known Limitations
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
## Additional Information
|
136 |
+
|
137 |
+
### Dataset Curators
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
### Licensing Information
|
142 |
+
|
143 |
+
[More Information Needed]
|
144 |
+
|
145 |
+
### Citation Information
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
### Contributions
|
150 |
+
|
151 |
+
Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"laptop": {"description": "This dataset is built as a playground for aspect-based sentiment analysis.\n", "citation": "", "homepage": "https://alt.qcri.org/semeval2015/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "aspects": {"feature": {"term": {"dtype": "string", "id": null, "_type": "Value"}, "polarity": {"dtype": "string", "id": null, "_type": "Value"}, "from": {"dtype": "int16", "id": null, "_type": "Value"}, "to": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "absa", "config_name": "laptop", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 410525, "num_examples": 3048, "dataset_name": "absa"}, "validation": {"name": "validation", "num_bytes": 101593, "num_examples": 800, "dataset_name": "absa"}}, "download_checksums": {"https://drive.google.com/uc?id=1Zvh4bZOZgSkIHrrA5WVvyPQO6-wWk4xQ": {"num_bytes": 568072, "checksum": "061e7902171bc3e08bd1bdc79c5766423c36cf29c29b4c9df5a53de800d5e9af"}, "https://drive.google.com/uc?id=14NgRdqcEHFfki0z49iMR8wqOEBnqdLH9": {"num_bytes": 142849, "checksum": "98c0459acb7daa1546916ea3fa5e795ceb3eacae0c5747206a559f0e8d46a7cd"}}, "download_size": 710921, "post_processing_size": null, "dataset_size": 512118, "size_in_bytes": 1223039}, "restaurant": {"description": "This dataset is built as a playground for aspect-based sentiment analysis.\n", "citation": "", "homepage": "https://alt.qcri.org/semeval2015/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "aspects": {"feature": {"term": {"dtype": "string", "id": null, "_type": "Value"}, "polarity": {"dtype": "string", "id": null, "_type": "Value"}, "from": {"dtype": "int16", "id": null, "_type": "Value"}, "to": {"dtype": "int16", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "category": {"feature": {"category": {"dtype": "string", "id": null, "_type": "Value"}, "polarity": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "absa", "config_name": "restaurant", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 545642, "num_examples": 3044, "dataset_name": "absa"}, "validation": {"name": "validation", "num_bytes": 160312, "num_examples": 800, "dataset_name": "absa"}}, "download_checksums": {"https://drive.google.com/uc?id=1fx1fWemdTYjonYSVfX-vcgU3KQa7C85V": {"num_bytes": 831483, "checksum": "6ff945386c4d0cab23728fe316298c7c534a7cc713b5f9a40349722d0fa7e0f2"}, "https://drive.google.com/uc?id=1fHD0USeUgiLrnTo6zvRajk8whvsTVdAX": {"num_bytes": 239963, "checksum": "2600b4af013590b4c613e1cbae12071fcb097860f5e3253d0cab2a9f886648cd"}}, "download_size": 1071446, "post_processing_size": null, "dataset_size": 705954, "size_in_bytes": 1777400}}
|
semeval-absa.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""SemEval 2015: Aspect-based Sentiment Analysis"""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
This dataset is built as a playground for aspect-based sentiment analysis.
|
26 |
+
"""
|
27 |
+
|
28 |
+
_HOMEPAGE = "https://alt.qcri.org/semeval2015/"
|
29 |
+
|
30 |
+
# TODO: Add link to the official dataset URLs here
|
31 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
32 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
33 |
+
_TRAIN_LAPTOP_URL = "https://drive.google.com/uc?id=1Zvh4bZOZgSkIHrrA5WVvyPQO6-wWk4xQ"
|
34 |
+
_VAL_LAPTOP_URL = "https://drive.google.com/uc?id=14NgRdqcEHFfki0z49iMR8wqOEBnqdLH9"
|
35 |
+
_TRAIN_RESTAURANT_URL = "https://drive.google.com/uc?id=1fx1fWemdTYjonYSVfX-vcgU3KQa7C85V"
|
36 |
+
_VAL_RESTAURANT_URL = "https://drive.google.com/uc?id=1fHD0USeUgiLrnTo6zvRajk8whvsTVdAX"
|
37 |
+
|
38 |
+
DOMAINS = ['laptop', 'restaurant']
|
39 |
+
|
40 |
+
class ABSAConfig(datasets.BuilderConfig):
|
41 |
+
"""SemEval 2015 - ABSA Configs"""
|
42 |
+
|
43 |
+
def __init__(self, domain: str, **kwargs):
|
44 |
+
if domain not in DOMAINS:
|
45 |
+
raise ValueError(f"Invalild domain: {domain}. Available domains: {DOMAINS}",)
|
46 |
+
|
47 |
+
name = domain
|
48 |
+
super(ABSAConfig, self).__init__(name=name, description=_DESCRIPTION, **kwargs)
|
49 |
+
|
50 |
+
self.domain = domain
|
51 |
+
|
52 |
+
self.url_train = _TRAIN_LAPTOP_URL if domain == 'laptop' else _TRAIN_RESTAURANT_URL
|
53 |
+
self.url_val = _VAL_LAPTOP_URL if domain == 'laptop' else _VAL_RESTAURANT_URL
|
54 |
+
|
55 |
+
|
56 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
57 |
+
class ABSA(datasets.GeneratorBasedBuilder):
|
58 |
+
"""SemEval 2015: Aspect-based Sentiment Analysis."""
|
59 |
+
|
60 |
+
_VERSION = datasets.Version("1.0.0")
|
61 |
+
|
62 |
+
BUILDER_CONFIGS = [
|
63 |
+
ABSAConfig(
|
64 |
+
domain='laptop',
|
65 |
+
version=_VERSION
|
66 |
+
),
|
67 |
+
ABSAConfig(
|
68 |
+
domain='restaurant',
|
69 |
+
version=_VERSION
|
70 |
+
)
|
71 |
+
]
|
72 |
+
|
73 |
+
def _info(self):
|
74 |
+
if self.config.domain == 'restaurant':
|
75 |
+
features = datasets.Features(
|
76 |
+
{
|
77 |
+
"id": datasets.Value("string"),
|
78 |
+
"text": datasets.Value("string"),
|
79 |
+
"aspects": datasets.Sequence({
|
80 |
+
'term': datasets.Value("string"),
|
81 |
+
'polarity': datasets.Value("string"),
|
82 |
+
'from': datasets.Value("int16"),
|
83 |
+
'to': datasets.Value("int16"),
|
84 |
+
}),
|
85 |
+
"category": datasets.Sequence({
|
86 |
+
'category': datasets.Value("string"),
|
87 |
+
'polarity': datasets.Value("string")
|
88 |
+
})
|
89 |
+
}
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
features = datasets.Features(
|
93 |
+
{
|
94 |
+
"id": datasets.Value("string"),
|
95 |
+
"text": datasets.Value("string"),
|
96 |
+
"aspects": datasets.Sequence({
|
97 |
+
'term': datasets.Value("string"),
|
98 |
+
'polarity': datasets.Value("string"),
|
99 |
+
'from': datasets.Value("int16"),
|
100 |
+
'to': datasets.Value("int16"),
|
101 |
+
})
|
102 |
+
}
|
103 |
+
)
|
104 |
+
# features = datasets.Features(
|
105 |
+
# {
|
106 |
+
# "id": datasets.Value("int16"),
|
107 |
+
# "text": datasets.Value("string"),
|
108 |
+
# "aspects": datasets.Sequence([{
|
109 |
+
# 'term': datasets.Value("string"),
|
110 |
+
# 'polarity': datasets.Value("string"),
|
111 |
+
# 'from': datasets.Value("int8"),
|
112 |
+
# 'to': datasets.Value("int8"),
|
113 |
+
# }]),
|
114 |
+
# "category": datasets.Sequence([{
|
115 |
+
# 'category': datasets.Value("string"),
|
116 |
+
# 'polarity': datasets.Value("string")
|
117 |
+
# }])
|
118 |
+
# }
|
119 |
+
# )
|
120 |
+
|
121 |
+
|
122 |
+
return datasets.DatasetInfo(
|
123 |
+
description=_DESCRIPTION,
|
124 |
+
features=features,
|
125 |
+
homepage=_HOMEPAGE
|
126 |
+
)
|
127 |
+
|
128 |
+
def _split_generators(self, dl_manager):
|
129 |
+
|
130 |
+
train_path = dl_manager.download(self.config.url_train)
|
131 |
+
val_path = dl_manager.download(self.config.url_val)
|
132 |
+
return [
|
133 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
134 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path})
|
135 |
+
]
|
136 |
+
|
137 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
138 |
+
def _generate_examples(self, filepath):
|
139 |
+
"""Generate examples."""
|
140 |
+
with open(filepath, 'r') as f:
|
141 |
+
contents = json.load(f)
|
142 |
+
for id_, row in enumerate(contents):
|
143 |
+
yield id_, row
|