diff --git "a/99FST4oBgHgl3EQfbzgH/content/tmp_files/load_file.txt" "b/99FST4oBgHgl3EQfbzgH/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/99FST4oBgHgl3EQfbzgH/content/tmp_files/load_file.txt" @@ -0,0 +1,971 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf,len=970 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content='13800v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content='LO] 31 Jan 2023 A monotone connection between model class size and description length Reijo Jaakkola Tampere University Finland Antti Kuusisto Tampere University University of Helsinki Finland Miikka Vilander Tampere University Finland Abstract This paper links sizes of model classes to the minimum lengths of their defining formulas, that is, to their description complexities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Limiting to models with a fixed domain of size n, we study description com- plexities with respect to the extension of propositional logic with the ability to count assignments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This logic, called GMLU, can alternati- vely be conceived as graded modal logic over Kripke models with the universal accessibility relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' While GMLU is expressively complete for defining multisets of assignments, we also investigate its fragments GMLU(d) that can count only up to the integer threshold d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' We fo- cus in particular on description complexities of equivalence classes of GMLU(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' We show that, in restriction to a poset of type realiza- tions, the order of the equivalence classes based on size is identical to the order based on description complexities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This also demonstrates a monotone connection between Boltzmann entropies of model classes and description complexities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Furthermore, we characterize how the relation between domain size n and counting threshold d determines whether or not there exists a dominating class, which essentially means a model class with limit probability one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' To obtain our results, we prove new estimates on r-associated Stirling numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' As another cru- cial tool, we show that model classes split into two distinct cases in relation to their description complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' 1 Introduction This paper investigates how sizes of model classes are linked to the minimum lengths of formulas needed to define the classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' In the scenarios we consider, we first fix a class M of models that share a domain of the same finite size n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The model classes M ⊆ M are then studied with respect to the extension of propositional logic with the ability to count propositional assignments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' We call this logic GMLU, as it can alternatively be defined as graded modal 1 logic over Kripke models with the universal relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' In order to obtain more fine grained results, we parameterize GMLU and study also its fragments GMLUd that can count only up to the threshold d ∈ Z+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This also enables us to demonstrate how the relationship between minimum formula lengths and model class sizes develops when we gradually increase the expressive power of the logic used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' For a model class M ⊆ M, the description complexity of M with respect to GMLUd is simply the minimum length of a formula of GMLUd needed to define M, if such a formula exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' In this paper we are particularly interested in the description complexi- ties Cd(M) of the logical equivalence classes M determined by GMLUd over M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Let us write M ≡d M′ if the models M, M′ ∈ M satisfy the same set of formulas of GMLUd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Note that Cd(M) of an equivalence class M of ≡d can also be regarded as the description complexity of each model M ∈ M, as the expressive power of GMLUd suffices precisely to describe M up to the equi- valence ≡d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' From this perspective, description complexity is analogous to Kolmogorov complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' There exist well known links between Kolmogorov complexity and Shannon entropy, see for example [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The recent work in [8],[7] demonstrates a way to conceive related results also in the scenario where relational structures are classified via logics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' In particular, it is shown that the expected Boltzmann entropy of the equivalence classes of GMLU is asymptotically equivalent to the expected description complexity (with respect to GMLU) times the size of the vocabulary considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' It is also shown that for d = 1, the greatest equivalence class of GMLUd has maxi- mum description complexity among the classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This paper builds on those results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Firstly, as a crucial tool for our proofs, we establish a classification of description complexities into two distinct classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This division is based on the numbers ni of elements realizing different propositional types i ∈ I in models of the described model class;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' here I is just an index set for the types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The division is then determined by whether or not ni = d for at least two different types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Using this, we establish a strong connection between model class sizes and description complexities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' For each model M ∈ M, let nM denote the tuple (ni)i∈I that gives the numbers ni of points realizing propositional types in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Furthermore, instead of recording numbers ni greater than the counting threshold d, simply put d in nM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' We define a poset (M, ⪯τ) over the models, where τ is the vocabulary and the order ⪯τ is based on comparing the tuples nM coordinatewise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The order ⪯τ is directly inherited also by the classes of ≡d such that M ⪯τ M′ if and only if for some (or equivalently, all) models M and M′ in the respective classes, we have M ⪯τ M′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' We will prove that for all classes M and M′ of ≡d such that M and M′ are ⪯τ-comparable, we have |M| < |M′| ⇔ Cd(M) < Cd(M′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' 2 In other words, over ⪯τ, the ordering of model classes according to size is identical to the ordering based on description complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This is an intimate link between syntax and semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' As a corollary, we obtain a correspon- ding relationship between Boltzmann entropies and description complexities of model classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' We then investigate how the classes of ≡d behave when we alter the domain size n and counting threshold d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Note that increasing d corresponds to moving to more and more expressive logics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' First we observe that for thresholds d and d′ > d and the corresponding Shannon entropies HS(≡d) and HS(≡d′) of the model class distributions given by ≡d and ≡d′, we have HS(≡d) < HS(≡d′) when d′ is at most n/2, and HS(≡d) = H(≡d′) when d is at least n/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' A similar result also follows for expected Boltzmann entropies HB(≡d) and HB(≡d′), but with the orders reversed, that is HB(≡d) > HB(≡d′) for d′ at most n/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' To get a better sense of the relative sizes of the classes when n and d are altered, we prove an asymptotic characterization of the class distributions as n → ∞ and d is a function of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Let us say that ≡d(n) has a dominating class if with limit probability one, a random model of size n belongs to a maximum size class in ≡d(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Similarly, all classes in ≡d(n) are vanishing if with limit probability zero, a random model of size n belongs to a maximum size class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Then the following results hold as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' If d(n) ≤ n/2|τ| − f(n) where f(n) = ω(√n), then ≡d(n) has a domi- nating class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' If d(n) ≥ n/2|τ| − f(n) where f(n) = o(√n), then ≡d(n) has no domi- nating class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' If d(n) ≥ n/2|τ| + f(n) where f(n) = ω(√n), then every class in ≡d(n) is vanishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' One corollary of these results is that for d(n) ≤ n/t−f(n), if f(n) = ω(√n), then with limit probability one, two random models of size n cannot be separated in GMLUd(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Finally, we also give a non-asymptotic variant of the characterization of the class distributions for ≡d including explicit bounds on d for separating the cases where ≡d has a majority class or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' By a majority class, we mean a class containing more than half of all models in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Concerning related work, as already mentioned, it is well known that entropy and Kolmogorov complexity are related.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Indeed, for computable distributions, Shannon entropy links to Kolmogorov complexity to within a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This result is discussed, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=', in [11], [4], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' However, it is shown in [15] that the general link fails for R´enyi and Tsallis entropies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' See 3 for example [4], [10], [15] for R´enyi and Tsallis entropies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The first connec- tion between logical formula length and entropy has—to our knowledge— been obtained in [8], [7], where expected Boltzmann entropy is shown to be asymptotically equivalent to description complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Concerning further related work, we will next discuss the proof tech- niques used in the current paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' For proving bounds on formula sizes, we use formula size games for the logics GMLUd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Indeed, variants of stan- dard Ehrenfeucht-Fra¨ıss´e games and (graded) bisimulation games would not suffice, as we need to deal with formula length, and thereby with all logi- cal operators, including connectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The formula size games for the logics GMLUd will be developed below based on a similar game used in [8], [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' That game builds on the game for standard modal logic ML used and devel- oped in [5] for proving a nonelementary succinctness gap between first-order logic and ML.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The first formula size game, developed by Razborov in [13], dealt with propositional logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' A later variant of the game was defined by Adler and Immerman for CTL in [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Designing the games for GMLUd is relatively straightforward and based directly on similar earlier systems, but using them requires some nontrivial combinatorial arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' In addition to games, we also make use of a range of techniques for esti- mating model class sizes and description complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' These include Stirling’s approximations and Chernoff bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' In particular, to obtain our results, we prove new estimates on r-associated Stirling numbers, which may be of independent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' As a brief summary of our paper, the main objective is to elucidate the general picture of how description length relates to model class size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' This also builds links between logic and notions of entropy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The logic GMLU is suitable for the current study, and it even allows simple access to a chain of increasingly expressive logics GMLUd via increasing d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The concluding section discusses possibilities for generalizing to further logics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' While the current paper focuses on theory, the notion of description complexity is also relevant in a range of applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' For example, in some currently active research on explainability in AI, minimal length specifications can be used as explanations of longer formulas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' For work on this topic see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=', [2], [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The plan of the paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' After the preliminaries in Section 2, we prove crucial lower bounds for description complexity in Section 3 using games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' In Section 4 we prove a monotone connection between model class size and description complexity, and in Section 5 we investigate phase transitions of class size distributions by varying n and d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Section 6 concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' 4 2 Preliminaries We first define the logics studied in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' Let τ be a finite set of proposition symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' We consider τ to be fixed throughout the entire paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FST4oBgHgl3EQfbzgH/content/2301.13800v1.pdf'} +page_content=' The syntax of graded universal modal logic GMLU[τ] is generated as follows (the syntactic choices will be explained later on): ϕ :=♦≥kψ | ■