diff --git "a/7dFAT4oBgHgl3EQfoR1F/content/tmp_files/load_file.txt" "b/7dFAT4oBgHgl3EQfoR1F/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/7dFAT4oBgHgl3EQfoR1F/content/tmp_files/load_file.txt" @@ -0,0 +1,864 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf,len=863 +page_content='1 Giant resonant enhancement for photo induced superconductivity in K3C60 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Rowe1, , B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Yuan1, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Buzzi1, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Jotzu1, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Zhu1, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Fechner1, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Först1, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Liu1,2 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Pontiroli3, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Riccò3, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Cavalleri1,4,* 1 Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany 2 Paul Scherrer Institute, Villigen, Switzerland 3 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Italy 4 Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom e mail: edward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='rowe@mpsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='mpg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='de, andrea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='cavalleri@mpsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='mpg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='de Photo-excitation at terahertz and mid-infrared frequencies has emerged as a new way to manipulate functionalities in quantum materials, in some cases creating non-equilibrium phases that have no equilibrium analogue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In K3C60, a metastable zero-resistance phase was documented with optical properties and pressure de- pendences compatible with non-equilibrium high temperature superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Here, we report the discovery of a dominant energy scale for this phenomenon, along with the demonstration of a giant increase in photo-susceptibility near 10 THz excitation frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' At these drive frequencies a metastable supercon- ducting-like phase is observed up to room temperature for fluences as low as ~400 µJ/cm2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These findings shed light on the microscopic mechanism underlying photo-induced superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' They also trace a path towards steady state op- eration, currently limited by the availability of a suitable high-repetition rate opti- cal source at these frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2 The search for new non-equilibrium functional phases in quantum materials, such as op- tically induced ferroelectricity1,2, magnetism3-5, charge density wave order6,7, non-trivial topology8,9 and superconductivity10-18, has become a central research theme in condensed matter physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In the case of K3C60 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 1a), mid infrared optical pulses have been exten- sively documented to yield an unconventional non-equilibrium phase which exhibits met- astable zero-resistance14, an extraordinarily high mobility and a superconducting-like gap in the optical conductivity12,14 that reduce with applied pressure13, and nonlinear I-V char- acteristics19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' All these observations are indicative of non-equilibrium high temperature superconductivity, observed at base temperatures far exceeding the highest equilibrium superconducting critical temperature of any alkali-doped fulleride (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 1b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Typical experimental results reported to date are displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' K3C60 powders were held at a base temperature T = 100 K ≫ T!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' = 20 K and irradiated with 1 ps-long pulses with 170 meV photon energy (l ~ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='3 µm, ) ~ 41 THz) at a fluence of 18 mJ/cm².' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This strong excitation regime yielded a long-lived transient state with dramatic changes in both the real and imaginary parts of the optical conductivity, measured using phase Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Crystal structure and phase diagram K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (a) Crystal structure of the organic molec- ular solid K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' C60 molecules are situated at the vertices of a face-centered-cubic lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Potassium atoms (red) occupy the interstitial voids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (b) Pressure-temperature phase diagram of the fcc-A3C60 alkali-doped fulleride family of compounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical pressure tunes the spacing between the C60 molecules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The grey line indicates the boundary between the insulating and metallic/superconduct- ing compounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The blue shaded area indicates where superconductivity is observed at equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The star indicates the K3C60 compound investigated in this work, which superconducts at tempera- tures !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ≤ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' = 20K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Insulator Superconductor 3 sensitive terahertz time-domain spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The transient optical properties displayed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2c are reminiscent of those of the equilibrium superconducting state measured in the same material at T ≪ T!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' = 20 K (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2b), and are suggestive of transient high temperature superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These signatures consist of a saturated reflectivity, a gap in the real part of the optical conductivity +"(-), and an imaginary conductivity +#(-) which diverges towards low frequencies as ~1/-.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The divergent +#(-) implies (through Kramers-Kronig relations) the presence of a peak in +" centred at zero frequency, with a width limited by the lifetime of the state which also determines the carrier mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were obtained by accounting for the inhomogeneous excitation of the probed volume using a multilayer model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Here we show the results of this reconstruction under the assumption of a linear (open symbols) and sublinear (filled symbols)20 dependence of the photo-induced changes in the terahertz refractive index on the mid-infrared pump fluence, as detailed in supplementary section S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Allowing for a finite temperature super- conductor, in which a varying density of uncondensed quasi-particles also contributes to the terahertz response, the superconducting-like nature of the transient state is inde- pendent of the specific choice of assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Only quantitative differences, associated with the relative densities of induced superfluid and heated quasi-particles, which can be extracted by fitting with a two-fluid model, emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Note that the enhancement of conductivity observed in these experiments is not con- nected to an increase in the carrier density, but is solely caused by a transfer of spectral weight from the real part (resistive) to the imaginary part (inductive) of the conductivity, and hence reflects a colossal increase in the carrier mobility at constant density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Three spectrally-integrated figures of merit are extracted from the snapshots of R(-, 2), +"(-, 2) and +#(-, 2), and plotted as a function of pump-probe time delay 2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2e, showing the time evolution of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 4 Figure 2: Photo induced metastable superconductivity in K3C60 generated with intense 170 meV excitation pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (a) Schematic of the experimental set up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Pump pulses with 170 meV pho ton energy were generated in an optical parametric amplifier (OPA) and subsequent difference fre quency generation (DFG) of the signal and idler beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These pulses were stretched to a duration of ~1 ps by linear propagation in a highly dispersive CaF2 rod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The photoinduced changes in the far infrared optical properties of K3C60 were detected with phase sensitive transient THz time domain spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (b) Reflectivity (sample–diamond interface), real and imaginary part of the optical conductivity of K3C60 measured upon cooling across the equilibrium superconducting transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The blue shading indicates the change of spectral weight in these quantities across the thermally driven superconducting transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (c) Same quantities measured at equilibrium (red lines) and 10 ps after excitation (filled and open symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The data in filled (open) symbols are obtained ac counting for the inhomogeneous excitation of the probed volume under the assumption of a square root (linear) fluence dependence of the photo induced changes in the complex refractive index of the material (Supplementary Section S6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The blue shading indicates the change of spectral weight in these quantities after photo excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The blue solid lines are fits to the transient optical data with a Drude Lorentz model (Supplementary Section S7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were acquired at a base tem perature T = 100 K with an excitation fluence of 18 mJ cm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (d) Same quantities as in (c) but meas ured at a base temperature T = 295 K with an excitation fluence of 18 mJ cm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (e) Time dependence of the average reflectivity, average real part of the optical conductivity &"((), and light induced “su perfluid density” extracted from a two fluid model fit and expressed as a fraction of the total charge carrier density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' All quantities are evaluated in the region of the photo induced gap (5–10 meV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Filled and open symbols indicate the results of two different reconstructions as in (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The red dotted lines indicate the value of the corresponding quantity at equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were acquired at a base temperature T = 100 K with a fluence of 18 mJ cm−2 and a pump pulse duration of ~1 ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' a 3-Stage OPA WLG DFG Ti:SaOscillator Ti:SaAmplifierx2 THz gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' b d e 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 Reflectivity* Reflectivity 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 25K > Tc Equilibrium Equilibrium 18 mJ cm-2 5K< Tc Photoexcited Photoexcited 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 900 Equil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' T = 100 K T = 295 K T= i0 ps = iops cm 0% Gapping cm 600 150 300 * 6 6 100% 0 900 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 cm 600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 300 (S 02 102040 102040 04 102040 C 0 5 10 50 100 Energy (meV) Energy (meV) Energy (meV) Time (ps) 5 The first two quantities are the frequency-averaged values of the reflectivity and of +"(-) below the energy gap, for which a zero-temperature superconductor with infinite lifetime would give values of 1 and 0 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The third figure of merit is the fractional super- fluid density which is proportional to the divergence of +#(-).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This is determined by fitting the photoexcited optical proper- ties with a two-fluid model where one fluid represents the remaining normal carriers with a finite scattering rate and the other has zero scattering rate, giving a superconducting- like contribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Details of this fitting procedure are given in supplementary section S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For low excitation fluences the system becomes superconducting-like after photoexcita- tion, and relaxes on a time scale of a few picoseconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' As already seen in the spectrally resolved measurements, for high excitation fluences the system enters a metastable re- gime in which the superconducting-like optical properties persist for much longer times, up to several nanoseconds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' We note that the temperature dependence reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 12 shows transient supercon- ducting-like optical properties up to a temperature of 150-200 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For higher tempera- tures the gapping and extracted superfluid density are severely reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Examples of such spectra measured at room temperature are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nevertheless, the pressure scaling reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 13 suggests that traces of non-equilibrium superconductivity may survive up to higher temperatures, raising the prospect that with more effective driving a full manifestation of the metastable superconducting-like state may be possible at 300 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' To date, these experiments have been limited to excitation photon energies between 80 and 165 meV (20-40 THz), such that a more comprehensive search for a dominant excita- tion frequency scale has remained out of reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Many potentially important resonances at lower frequencies (ℎ4 < 80 meV) have remained unexplored, primarily due to the lack of a suitable high-intensity pump source that operates in this range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In the present work, we explore excitation at energies between 24 and 80 meV (6-20 THz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 6 Figure 3: Photo-induced metastable superconductivity in K3C60 generated with 41 meV exci- tation pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (a) Schematic of the experimental set-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Pump pulses with 41 meV (10 THz) photon energy are generated in a twin optical parametric amplifier (OPA) and subsequent chirped-pulse difference frequency generation (DFG) of the two stretched signal beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The photoinduced changes in the far-infrared optical properties of K3C60 are detected with phase-sensitive transient THz time-domain spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (b) Reflectivity (sample–diamond interface), real and imaginary part of the optical conductivity of K3C60 measured at equilibrium (red lines) and 50 ps after excita- tion (filled and open symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The data in filled (open) symbols are obtained accounting for the inhomogeneous excitation of the probed volume under the assumption of a square root (linear) flu- ence dependence of the photo-induced changes in the complex refractive index of the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The blue shading indicates the change of spectral weight in these quantities after photo-excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were acquired at a base temperature T = 100 K with pump pulses tuned to 41 meV (10 THz) center frequency and excitation fluence of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='4 mJ cm-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (c) Same quantities as in (b) but measured 10 ps after photoexcitation at a base temperature T = 295 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (d) Same quantities as in (c) but meas- ured 50 ps after photoexcitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (e) Time dependence of the average reflectivity, average real part of the optical conductivity &"((), and light-induced “superfluid density” extracted from a two-fluid model fit and expressed as a fraction of the total charge carrier density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' All quantities are evaluated in the region of the photo-induced gap (5–10 meV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Filled and open symbols indicate the results of two different reconstruction as in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The inset in the top panel highlights the early time delays region where light amplification (* > 1) is observed (red shading).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The red dotted lines indicate the value of the corresponding quantity at equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were acquired at a base temperature T = 100 K with pump pulses tuned to 45 meV (11 THz) photon energy and excitation fluence of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 mJ cm-2 a 2x3-stageOPAs Pulsestretchers WLG DFG THz gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Ti:SaAmplifier b e Reflectivity Reflectivity* .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 Equilibrium Equilibrium Equilibrium Photoexcited Photoexcited Photoexcited 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 900 T=100K T= 295K T= 295K 0% cm T = 50 ps T = 10 ps T = 50 ps 600 cm Gapping 150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 mJ cm-2 300 * 100% 0 6 900 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 600 ntot 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 nsf 300 6 0 4 102040 4102040 41020 0 5 10 50 100 Energy (meV) Energy (meV) E Energy (meV) Time (ps) 7 This energy range hosts a number of excitations, both vibrational (phonons) and elec- tronic in nature, including a broad polaronic peak seen in +" centered at approximately 60 meV (15 THz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The possible relevance of this excitation has been highlighted in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 21, although this prediction could not be tested to date.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' To achieve wide tuneability, we made use of a terahertz source based on chirped pulse difference frequency generation, mixing the near-infrared signal beams of two phase- locked optical parametric amplifiers22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This source, illustrated schematically in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 3a and described in detail in supplementary section S4, was used to generate narrow-bandwidth pulses with photon energies spanning the range from 24 to 145 meV (6-35 THz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' All meas- urements reported here were carried out with an excitation bandwidth of ~4 meV (1 THz) and ~600 fs pulse duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The same probing protocol as that reported in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2 was utilized here to detect changes in the complex optical properties for probe energies spanning 4-18 meV (1-4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 THz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figures 3b-d show reflectivity and complex conductivity spectra measured after photoex- citation with pulses tuned to 41 meV photon energy (l ~ 30 µm, ) ~ 10 THz) at base tem- peratures of 100 K and room temperature, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure 3e displays the time-evo- lution of the optical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The response is very similar to the case reported in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2 for 170 meV (41 THz) excitation, manifested on metastable timescales but persisting here up to room temperature – despite an almost two orders of magnitude weaker excitation fluence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure 4a shows the scaling with fluence of the below-gap averaged values of 8(-) and +"(-), as well as the fractional superfluid density in response to photoexcitation at 170 meV (41 THz) and 41 meV (10 THz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These measurements were carried out at a pump-probe time delay of 10 ps, and thus refer to the metastable phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The figure shows how all figures of merit approach their equilibrium superconducting-state values as the 8 fluence increases, with the fluence required being approximately 50 times less for 41 meV (10 THz) compared to 170 meV (41 THz) excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Similar fluence dependence measurements were carried out by varying the photon en- ergy of the pump and maintaining a constant 4 meV (1 THz) bandwidth with 600 fs pulse duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For all excitation photon energies between 24 meV (6 THz) and 145 meV (35 THz) the photoinduced changes in the optical properties were qualitatively similar to those shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2, 3 with only the size of the response for a given fluence differing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' From each fluence dependence we extracted a figure of merit for the photo-susceptibility, Figure 4: Scaling of the out-of-equilibrium features of photo-induced metastable supercon- ductivity in K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (a) Fluence dependence of the average reflectivity, average real part of the op- tical conductivity &"((), and light-induced “superfluid density” extracted from a two-fluid model fit and expressed as a fraction of the total charge carrier density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' All quantities are evaluated in the region of the photo-induced gap (5–10 meV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Red and blue symbols indicate measurements with excitation pulses tuned to 41 meV (10 THz) and 170 meV (41 THz) central frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The red dotted lines indicate the value of the corresponding quantity at equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were acquired at a base temperature T = 100 K, at a time-delay ∆t = 10ps, and with a pump pulse duration of ~600 fs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (b) Frequency dependence of the photo-susceptibility of K3C60 defined as the gradient of the lost spectral weight in &" in the low-fluence limit (Supplementary Section S8) measured 10 ps and 50 ps after photo-excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These measurements were carried out at a base temperature T = 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data are obtained by accounting for the inhomogeneous excitation of the probed volume un- der the assumption of a square root fluence dependence of the photo-induced changes in the com- plex refractive index of the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 41 me 170 meV 9 defined as the rate of growth of the +" gap with excitation fluence in the limit of low flu ence (see supplementary section S8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Plots of the pump frequency dependent photo sus ceptibility are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 4b for both 10 ps and 50 ps pump probe time delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A peak centered at 41 meV (10 THz) with approximately 16 meV FWHM bandwidth is observed in these measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In the next section we will discuss three distinct energy scales which coincide with this resonance, sequentially these relate to “on ball” orbital excita tions, phonons and finally excitons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Superconductivity in alkali doped fullerides is believed to be mediated by a dynamical Jahn Teller distortion, which leads to an effective negative Hund’s coupling for the orbit als of a single buckyball23 and to a low spin S=1/2 state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A theoretical model based on this assumption has been successful at providing a quantitatively correct phase diagram for fulleride superconductors, based on ab initio calculations24,25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Within this model, the local ground state of the system is a six fold degenerate low spin state, which features intra orbital pairs that de localize over two molecular orbitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' As detailed in supplementary section S10, a first set of local excited states also features such pairs, albeit with a different angular momentum (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' a different inter orbital phase for the delocalized pair).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Ab initio calculations predict an energy splitting of 37 meV between these two sets of states24,25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The observed resonance may therefore be related to the creation of interorbital pairs with local angular momentum, which may also contribute to superconductivity, as suggested in the Suhl Kondo mechanism26,27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' However, it is not yet clear how exactly this excitation is transformed in the presence of tunneling between neighboring C60 molecules, and why the creation of such pairs may support metastable superconductivity at such high tem peratures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Furthermore, as the local parity of this excited state would be different from that of the ground state, condensation in this configuration may give rise to a supercon ductor with different symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This possibility, whilst tantalizing, remains speculative and should be tested with more comprehensive ultrafast probing methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 10 Turning to phonon excitations, we also note that the 41 meV resonance frequency identi- fied here coincides with an infrared-active T1u phonon which predominantly consists of intramolecular motion of the C atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' While the atomic motions of the 170 meV molecular mode discussed previously in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 12 are directed along the tangential directions of the C603- molecule, those of the 41 meV mode are predominantly along the radial directions (see supplementary section S9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' By performing frozen phonon calculations using density functional theory (DFT) we evaluated the different impact of these distortions on the three t1u molecular levels at the Fermi energy, which we map out from DFT wave functions as maximally-localized Wannier functions (supplementary section S9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In the undistorted C603- structure these molecular levels are degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Applying a distortion along a T1u coordinate lifts this degeneracy leaving a doubly degenerate t1u orbital lowered in energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This electronic configuration is prone to developing a Jahn-Teller distortion that may lead to an enhanced negative Hund’s coupling, possibly facilitating the onset of superconduc- tivity at higher temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The strength of the induced splitting is quadratic in the phonon coordinate and is more significant for when driving the 41 meV mode compared to the 170 meV one, suggesting that the observed resonance may arise from a more efficient manipulation of the elec- tronic degrees of freedom when driving the 41 meV T1u mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Finally, we address the electronic excitations discussed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 21, in which the existence of a polaronic mode was predicted at the same energy scales as the resonance reported here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' However, we also note that the proposed mechanism for the formation of the non- equilibrium superconducting-like state was one in which the quasi-particles are cooled incoherently via coupling to the polaronic bath.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' As already reported in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 28 and shown here in the inset to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 3e, the response of the sample in the first few picoseconds after photoexcitation yields amplification of the terahertz probe light, which is likely to reflect coherent dynamics of the driven degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Assuming that the mechanism 11 proposed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 21 were to be valid, the early time dynamics of that model would require further investigation to understand how such coherences would arise at early times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The amplification observed here and in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 28 has so far been attributed to the existence of a parametric resonance that couples amplitude (Higgs) modes to phase (Goldstone) modes, an effect possible at the sample surface because of reduced screening.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' We expect the significance of this discovery to be capitalized upon in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The extreme efficiency improvement due to resonant enhancement, nearing two orders of magnitude, is expected to also dramatically reduce unwanted dissipation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This, taken in conjunction with the observed nanosecond long lifetime suggests that excitation of the sample with a train of pulses of only 400 µJ/cm2 delivered at 100 MHz repetition rate – as determined by the inverse lifetime of this state may yield continuous wave operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Because this effect is documented here to persist up to room temperature, continuous wave operation would likely have important practical implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' To make this regime experimentally accessible, single order of magnitude improvements in the efficiency of the process, or in the light matter coupling strength, combined with suitable develop ments in high repetition rate THz sources would be required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Acknowledgments The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007 2013)/ERC Grant Agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 319286 (QMAC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) via the Cluster of Excellence ‘The Hamburg Centre for Ultrafast Imaging’ (EXC 1074 – project ID 194651731).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' We thank Michael Volkmann and Peter Licht for their technical assistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' We are also grateful to Boris Fiedler and Birger Höhling for their support in the fabrication of the elec tronic devices used on the measurement setup, and to Jörg Harms for assistance with graphics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 12 References 1 Nova, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Disa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Fechner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Cavalleri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Metastable ferroelectricity in optically strained SrTiO3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science 364, 1075-1079, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2 Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science 364, 1079-1082, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 3 Disa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Polarizing an antiferromagnet by optical engineering of the crystal field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 16, 937-941, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 4 Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Light-induced ferromagnetism in moiré superlattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature 604, 468-473, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 5 Radu, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature 472, 205-208, (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 6 Kogar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Light-induced charge density wave in LaTe3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 16, 159-163, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 7 Wandel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Enhanced charge density wave coherence in a light-quenched, high- temperature superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science 376, 860-864, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 8 Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Steinberg, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Jarillo-Herrero, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Gedik, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Observation of Floquet-Bloch States on the Surface of a Topological Insulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science 342, 453, (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 9 McIver, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Light-induced anomalous Hall effect in graphene.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 16, 38- 41, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 10 Fausti, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Light-induced superconductivity in a stripe-ordered cuprate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science 331, 189-191, (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 11 Hu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Optically enhanced coherent transport in YBa2Cu3O6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 by ultrafast redistribution of interlayer coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Materials 13, 705-711, (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 12 Mitrano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Possible light-induced superconductivity in K3C60 at high temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature 530, 461-464, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 13 Cantaluppi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Pressure tuning of light-induced superconductivity in K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 14, 837-841, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 14 Budden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Evidence for metastable photo-induced superconductivity in K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 17, 611-618, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 15 Buzzi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Photo-molecular high temperature superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review X 10, 031028, (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 16 Buzzi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Phase Diagram for Light-Induced Superconductivity in κ-(ET)2-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review Letters 127, 197002, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 17 Cremin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Photoenhanced metastable c-axis electrodynamics in stripe-ordered cuprate La1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='885Ba0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='115CuO4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences 116, 19875, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 18 Isoyama, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Light-induced enhancement of superconductivity in iron-based superconductor FeSe0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5Te0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Communications Physics 4, 160, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 13 19 Wang, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nonlinear transport in a photo-induced superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='06425, (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 20 Dodge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Lopez, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Sahota, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Photoinduced Superconductivity Reconsidered: The Role of Photoconductivity Profile Distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='01114, (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 21 Nava, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Giannetti, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Georges, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Tosatti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Fabrizio, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Cooling quasiparticles in A3C60 fullerides by excitonic mid-infrared absorption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 14, 154-159, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 22 Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 42, 129-131, (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 23 Capone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Fabrizio, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Castellani, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Tosatti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Strongly Correlated Superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science 296, 2364-2366, (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 24 Nomura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Sakai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Capone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Arita, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science Advances 1, e1500568, (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 25 Nomura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Sakai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Capone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Arita, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Exotics-wave superconductivity in alkali-doped fullerides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Journal of Physics: Condensed Matter 28, 153001, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 26 Suhl, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Dispersion Theory of the Kondo Effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review 138, A515-A523, (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 27 Kondo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Resistance Minimum in Dilute Magnetic Alloys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Progress of Theoretical Physics 32, 37-49, (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 28 Buzzi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Higgs-Mediated Optical Amplification in a Nonequilibrium Superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review X 11, 011055, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 14 Giant resonant enhancement for photo induced superconductivity in K3C60 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Rowe1, , B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Yuan1, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Buzzi1, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Jotzu1, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Zhu1, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Fechner1, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Först1, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Liu1,2 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Pontiroli3, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Riccò3, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Cavalleri1,4,* 1 Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany 2 Paul Scherrer Institute, Villigen, Switzerland 3 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Italy 4 Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom e mail: edward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='rowe@mpsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='mpg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='de, andrea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='cavalleri@mpsd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='mpg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='de Supplemental Material S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Sample growth and characterization S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Determination of the equilibrium optical properties S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' High fluence mid infrared source S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Frequency tunable narrowband terahertz and mid infrared source S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Measurements of the transient THz reflectivity S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Determination of the transient optical properties S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Fitting the transient optical spectra S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Extracting the frequency dependent photosusceptibility S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Density functional theory calculations S10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Local electronic hamiltonian calculations 15 S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Sample growth and characterization The K3C60 powder pellets used in this work were prepared and characterized as reported previously1-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Stoichiometric amounts of ground C60 powder and potassium were placed in a sealed pyrex vial, which was evacuated to a pressure of 10-6 mbar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Whilst keeping the C60 powder and solid potassium separated, the vial was kept at 523 K for 72 h and then at 623 K for 28 h such that the C60 powder was exposed to pure potassium vapor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The vial was then opened inside an Ar glovebox (<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 ppm O2 and H2O), where the powder was reground and pelletized before annealing at 623K for 5 days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' X-ray diffraction measurements were then carried out on the resulting K3C60 powder, which confirmed that it was phase pure, with an average grain size ranging between 100 and 400 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The static superconducting transition temperature was measured to be 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='8 K (in agreement with literature values) via magnetic susceptibility measurements upon zero field cooling and cooling in field with a field strength of 400 A/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' X ray diffraction data and single f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' phase Rietveld refinement for the K3C60 powder used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Temperature dependence of the sample magnetic susceptibility measured by SQUID magnetometry upon cooling without (ZFC: zero field cooling) and with a magnetic field applied (FCC: field cooled cooling).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' observed (10emu/(g0e) calculated residual reflections 20 ZFC FCC 30 40 50 10 20 30 40 50 60 5 10 15 20 2A tdearees Temperature 16 S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Determination of the equilibrium optical properties The equilibrium reflectivity was measured for photon energies between 5 meV and 500 meV using a commercial Fourier-transform infrared spectrometer (FTIR) equipped with a microscope at the SISSI beamline in the Elettra Synchrotron Facility (Trieste, Italy), as reported previously1-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The sample was pressed by a diamond window into a sealed holder in order to obtain an optically flat interface and prevent exposure to air.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This procedure was carried out inside an Ar filled glove box (<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 ppm O2 and H2O) before the sealed sample was removed and mounted on a He cooled cryostat to enable temperature dependent measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The K3C60 reflectivity spectra were referenced against a gold mirror placed at the sample position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In order to extract the complex optical conductivity a Kramers-Kronig algorithm for samples in contact with a transparent window4 was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This requires data at all frequencies, which were obtained, at low energies (<5 meV) using an extrapolation based on a Drude-Lorentz fit, and at high energies (>500 meV) using data measured on single crystal samples reported in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 5,6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The equilibrium properties are shown in figure S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 for temperatures of 100 K and 300 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This and further data measured at different temperatures and pressures were already reported in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 1,2 and discussed also in comparison with data obtained from single crystals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were fitted with a Drude-Lorentz model, which is given by the following equation: 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (𝜔) + 𝑖𝜎"(𝜔) = 𝜔#" 4𝜋 1 𝛾$ − 𝑖𝜔 + 𝜔#,&\'( " 4𝜋 𝜔 𝑖.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='𝜔),&\'( " − 𝜔"/ + 𝛾&\'(𝜔 Here the first term represents the Drude response of the free carriers with 𝜔# and 𝛾$ representing the plasma frequency and scattering rate respectively, whereas the second term captures the mid infrared absorption in the form of a Lorentz oscillator centered at frequency 𝜔),&\'( with plasma frequency 𝜔#,&\'( and damping rate 𝛾&\'(.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The equilibrium data reported here was used to normalize the transient optical spectra of K3C60 measured upon photoexcitation, as discussed in detail in section S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 17 Figure S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: Equilibrium optical properties (reflectivity, real, and imaginary part of the optical conductivity) of K3C60 measured at a temperature of 100 K (blue) and 300 K (green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The black dashed curve is a Drude Lorentz fit to the optical conductivity at 100 K in the range from 3 meV to 60 meV as described in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' High fluence mid infrared source For the data reported in figure 2 and in figure 4(a) at 170 meV (41 THz) excitation, the pump pulses were generated via difference frequency mixing (DFG) of the signal and idler output of a three-stage home-built optical parametric amplifier (OPA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A commercial Ti:Al2O3 amplifier delivering 60 fs duration pulses at 800 nm central wavelength was used to drive the OPA, and the DFG process was performed using a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 mm thick GaSe crystal, resulting in ~100 fs long pulses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The 170 meV pulses were then propagated through a highly dispersive 16 mm long CaF2 rod, stretching their duration to ~1 ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The spectrum of the pump pulses was characterized using a home built FTIR spectrometer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Their duration was measured by cross-correlation with a synchronized, 35 fs long, 800 nm wavelength pulse in a 50 μm thick GaSe crystal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' While a certain degree of tunability is also given by this source, its useful operation range spans between 80 and 320 meV, hence it was only used for the high-intensity experiments at 170 meV excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 900 E 900㎡ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 300 K 100K Reflectivity T T 600 600 Fit 100 K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 300 300 02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='04 0 10 30 100 410 30 100 4 10 30 100 Energy (meV) Energy (meV) Energy (meV) 18 S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Frequency tunable narrowband terahertz and mid infrared source For the experiments that required tunability of the excitation pulses down to the THz gap, a different source was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This source is based on the principle of chirped-pulse difference frequency generation (CP-DFG) in organic non-linear optical crystals, namely DAST and DSTMS of approximately 600 μm thickness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The principle of operation of this new source is described in detail in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A commercial Ti:Al2O3 amplifier is used to drive two identical three-stage OPAs which are seeded by the same white-light, such that the signal beams have the same phase-fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The ~100 fs signal pulses are then chirped using a pair of transmission-grating-based stretchers as depicted in figure 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This arrangement enables continuous tuning of the pulse durations by varying the distance between the gratings in each pair, effectively enabling continuous tuning of the pump-pulse bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For this experiment the pump pulse bandwidth was kept constant at 4 meV by maintaining a signal pulse duration of ~600 fs, as measured using a home-built second harmonic-based Frequency-Resolved-Optical-Gating (FROG) device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Frequency tuning of the generated excitation pulses was carried out both by varying the central wavelengths of the two OPA signal beams, and by varying the time delay between the chirped signal pulses in the DFG crystal (for fine tuning).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For each measurement the pump frequency spectrum was measured via FTIR (Fourier Transform Infrared Spectroscopy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Measurements of the transient THz reflectivity The experiments presented in Figures 2, 3, and 4 were performed on compacted K3C60 powder pellets pressed against a diamond window to ensure an optically flat interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' As K3C60 is water and oxygen sensitive, the pellets were sealed in an air tight holder and all sample handling operations were performed in an Argon filled glove box with <0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 ppm O2 and H2O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The sample holder was then installed at the end of a commercial Helium cold finger (base temperature 5K), to cool the pellets down to a temperature of 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The changes in the properties of the sample following photoexcitation were measured using time domain THz spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 19 The mid-infrared pump induced changes in the low frequency optical properties, were retrieved using transient THz time domain spectroscopy in two different experimental setups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The THz probe pulses were generated via optical rectification in a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 mm thick (110)-cut GaP crystal starting from 800 nm pulses with a duration of ~80 fs and 35 fs, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Whilst in one setup these 800 nm were derived from the same laser used for pumping the source described in section S4, the 35 fs, 800 nm pulses were generated by a second Ti:Al2O3 amplifier optically synchronized to that used to pump the high- intensity mid-infrared source described in section S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The THz probe pulses were then focused onto the sample with incidence angles of 30 and 0 degrees, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' After reflection from the sample, the electric field profile of the THz pulses was reconstructed in a standard electro-optic sampling setup, using a (110)-cut 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 mm GaP crystal supported on a 1 mm thick (100)-cut GaP substrate to delay internal reflections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The setup combined with the frequency tunable narrowband source had a measurement bandwidth that extended between 4 and 18 meV, while the other spanned between 4 meV to 29 meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The time resolution of both setups is determined by the measurement bandwidth and is ~250 fs and ~150 fs respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' To minimize the effects on the pump-probe time resolution due to the finite duration of the THz probe pulse, the experiments were performed as described in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 8, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The pump-probe time delay was controlled by fixing the delay between the 800 nm gating pulse and the mid-infrared pump pulse 𝜏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The transient THz field was then obtained by scanning the delay 𝑡 relative to both.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In order to simultaneously retrieve both the ‘pump on’ (𝐸*+, &- (𝑡, 𝜏)) and ‘pump off’ (𝐸*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝑡)) probe fields, a differential chopping scheme was deployed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The scheme was different for the two above mentioned setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For the narrowband, frequency tunable setup which operated at a repetition rate of 1 kHz, the THz probe pulse was chopped at a frequency of 500 Hz and the mid-infrared pump pulse was chopped at ~ 357 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The electro-optic sampling signal was then fed to two lock-in amplifiers reading out 𝑉/01!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' at 500 Hz and 𝑉/01" at 143 Hz respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For the high-intensity setup, operating at 2 kHz repetition rate, the THz probe pulse was chopped at a frequency of 1 kHz and the mid- infrared pump was chopped at 500 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In this case, the electro-optic sampling signal was filtered by two lock-in amplifiers operating at 1 kHz and 500 Hz respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 𝐸*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝑡) and Δ𝐸*+,(𝑡, 𝜏) were then extracted from the signals in the two lock-ins using the following formulas: 20 𝐸*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝑡) = 𝑉𝐿𝐼𝐴1(𝑡, 𝜏) − 𝛼𝑉𝐿𝐼𝐴2(𝑡, 𝜏) Δ𝐸*+,(𝑡, 𝜏) = 𝐸*+, &- (𝑡, 𝜏) − 𝐸*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝑡) = 𝛼𝑉𝐿𝐼𝐴2(𝑡, 𝜏) where 𝛼 is a calibration constant determined experimentally on an InSb reference sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This is done by extracting Δ𝐸*+,(𝑡, 𝜏) as the difference of two separate measurements of 𝐸*+, &- (𝑡, 0) and 𝐸*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝑡) performed with the first lock-in amplifier and by chopping only the THz probe pulse while leaving the mid-infrared pump pulse either always on or always off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Equating the value of Δ𝐸*+,(𝑡, 𝜏) determined in this way to the one with differential chopping yields the calibration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Determination of the transient optical properties From the measured changes in the reflected probe field (see section S5), the transient complex reflection coefficient of the sample 𝑟̃(𝜔, 𝜏) can be determined by taking the Fourier transform along t of both 𝐸*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝑡) and Δ𝐸*+,(𝑡, 𝜏) and using the following equation: Δ𝐸:*+,(𝜔, 𝜏) 𝐸:*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝜔) = 𝑟̃(𝜔, 𝜏) − 𝑟̃)(𝜔) 𝑟̃)(𝜔) where 𝑟̃)(𝜔) is the equilibrium complex reflection coefficient, obtained as described in section S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In the cases where the pump light penetrates in the sample several times deeper than the probe light, one can assume that the probe pulse samples a volume in the material that has been homogeneously excited by the pump.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In this case, it is possible to directly extract the complex-valued optical response functions by inverting the Fresnel equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' However, in K3C60 the penetration depth of the probe electric field (~600-900 nm) exceeds that of the pump (~500 nm at 10 THz, ~200 nm at 41 THz), such that the probe interrogates an inhomogeneously excited volume (Figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 21 As the pump penetrates into the material, its intensity is reduced, and it will induce progressively weaker changes in the refractive index of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This situation is modeled by “slicing” the probed thickness of the material into thin layers (figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1(b)), where we assume that the pump-induced changes in the refractive index ∆𝑛= scale according to the pump intensity in the layer, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 𝑛=(𝜔, 𝑧, 𝜏) = 𝑛=)(𝜔) + ∆𝑛=(𝜔, 𝜏, 𝐼(𝑧)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The pump intensity 𝐼(𝑧) is assumed to follow the dependence 𝐼(𝑧) = 𝐼)𝑒2,/4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' "#!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', where 𝑑#56# = 𝜆#56# 4𝜋𝐼𝑚 D𝑛).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='𝜔#56#/E F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Here, the refractive index of the material at the pump frequency, 𝑛).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='𝜔#56#/ is taken to be the one at equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Additionally, an assumption is made on the functional form for the dependence of ∆𝑛= on the pump intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Here, we consider two different forms given by: (1) ∆𝑛=(𝜔, 𝜏, 𝑧) ∝ 𝐼(𝑧) (2) ∆𝑛=(𝜔, 𝜏, 𝑧) ∝ H𝐼(𝑧) Respectively, these equations result in the following depth-dependent functional forms for the spatial profile of the refractive index: (1) 𝑛=(𝑧, 𝜔, 𝜏) = 𝑛=)(𝜔) + Δ𝑛=(𝜔, 𝜏)𝑒2,/4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='"#!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (2) 𝑛=(𝑧, 𝜔, 𝜏) = 𝑛=)(𝜔) + ∆𝑛=(𝜔, 𝜏)𝑒2,/"4!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='"#!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' where Δ𝑛=(𝜔, 𝜏) represents the pump-induced change in the refractive index of the material at the sample surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Schematics of pump-probe penetration depth mismatch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Multi-layer model with exponential decay used to calculate the pump-induced changes in the complex refractive index 𝑛#(𝜔, 𝜏) for each pump-probe delay 𝜏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The transition from red to background (grey) represents the decaying pump-induced changes in 𝑛#(𝜔, 𝑧).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Sample Sample Probe Pump 22 For each time delay 𝜏 and probe frequency 𝜔7, the complex reflection coefficient 𝑟̃(∆𝑛=) of the multilayer stack described above is calculated using the transfer matrix method10, keeping ∆𝑛= as a free parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' To numerically extract the value of ∆𝑛=(𝜔, 𝜏) we minimize the following function: IΔ𝐸:*+,(𝜔7) 𝐸:*+, &.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='.(𝜔7) − 𝑟̃(𝜔7, Δn) − 𝑟̃)(𝜔7) 𝑟̃)(𝜔7) I By then taking 𝑛=(𝜔, 𝜏) = 𝑛=)(𝜔) + Δ𝑛=(𝜔, 𝜏), one obtains the refractive index of the material as if it had been homogeneously excited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' From 𝑛=(𝜔, 𝜏) we then calculate 𝑅(𝜔, 𝜏), 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (𝜔, 𝜏) and 𝜎"(𝜔, 𝜏) as plotted in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figures S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 and S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='3 display extended data sets measured at increasing pump-probe delays with pump photon energies of 170 meV (41 THz) and 45 meV (11 THz) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Therein we report reflectivity (sample-diamond interface), real and imaginary part of the optical conductivity after reconstruction under the assumptions of models (1) and (2), identified with hollow and filled circles respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' At early delays, for both excitation mechanisms and reconstruction assumptions, the reconstructed reflectivity is higher than one, and the real part of the optical conductivity is negative, indicative of amplification of the incoming THz probe radiation, as discussed previously in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In all cases, this non-equilibrium driven state then relaxes into a superconducting-like state with a fully gapped 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (𝜔) and a divergence ∝ 1 𝜔 ⁄ in the 𝜎"(𝜔) spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' At even later delays the optical spectra are those of a finite temperature superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These optical properties can be interpreted in the context of a two fluid model, in which a varying density of uncondensed quasi-particles also contributes to the terahertz response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Importantly the time-evolution of K3C60 following photo-excitation is independent of the used reconstruction, and only the specific values of pump-probe delay up to which amplification, fully gapped superconductor, and finite temperature superconductor appear are affected by this choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 23 Figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2: Comparison of linear and sub-linear reconstruction in the transient optical spectra at 170 meV (41 THz) pump-photon energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Reflectivity (sample-diamond interface), real, and imaginary parts of the optical conductivity measured at equilibrium (red lines) and after photoexcitation (blue symbols) at increasing pump-probe time delays indicated in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The data in filled (open) symbols reconstructed under the assumption of a square-root (linear) fluence dependence of the changes in complex refractive index of the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were measured at 18 mJ cm-2 excitation fluence, and at a base temperature of 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 0 ps 1 ps 2 ps 5 ps 10 ps 50 ps 24 Figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='3: Comparison of linear and sub-linear reconstruction in the transient optical spectra at 45 meV (11 THz) pump-photon energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Reflectivity (sample-diamond interface), real, and imaginary parts of the optical conductivity measured at equilibrium (red lines) and after photoexcitation (blue symbols) at increasing pump-probe time delays indicated in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The data in filled (open) symbols reconstructed under the assumption of a square-root (linear) fluence dependence of the changes in complex refractive index of the material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' These data were measured at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 mJ cm-2 excitation fluence, and at a base temperature of 100 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 ps 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 ps 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 ps 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 ps 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 ps 25 S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Fitting of the transient optical spectra The transient optical conductivity spectra presented in figures 2-3 as well as for each fluence in figure 4 were fitted with a two-fluid model according to the following equation: 𝜎=(𝜔, 𝜏) = 𝜋 2 Λ\'(𝜏) 𝑒" 𝑚 𝛿[𝜔 = 0] + 𝑖 Λ\'(𝜏) 𝑒" 𝑚 1 𝜔 + Λ-(𝜏) 𝑒" 𝑚 1 𝛾$ − 𝑖𝜔 + R 𝐵-𝜔 𝑖(Ω-" − 𝜔") + 𝛾-𝜔 " -8!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=" Here the first term captures the frequency dependent contribution from the supercarriers with density Λ', the second term captures the Drude contribution of the normal carriers with density Λ- and scattering rate 𝛾$." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Finally, we include a sum over Figure S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: Two-fluid fit to the transient spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Reflectivity, real (𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=') and imaginary (𝜎") parts of the optical conductivity measured in equilibrium at 100 K (red) and 50 ps after photoexcitation with a fluence of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 mJ cm-2 at 45 meV (11 THz) photon energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The fit to the equilibrium data using the procedure described in this section is shown as a dashed black line and gives zero superfluid density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The two-fluid fit to the transient data generated using the same procedure is shown as a solid blue line and returns a superfluid fraction Λ# (Λ$ + Λ#) ⁄ = 73%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The data in this figure was reconstructed under the assumption of a square root dependence of the change in refractive index on excitation fluence (see supplementary section S6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 26 two Lorentz oscillators in order to capture the broad midinfrared absorption peak centered at around 60 meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=" The transient data are fitted at each delay 𝜏 using the parameter-set that captures the equilibrium optical conductivity spectra as a starting condition, and leaving only Λ' and Λ- free to vary, as though the effect of the pump is to simply convert carriers from the normal to the superconducting fluid." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 shows representative fits to transient data measured at 100 K base temperature and at 50 ps time delay, as well as to the 100 K equilibrium spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=" Importantly, while the fit of the equilibrium data converges to a superfluid fraction Λ' (Λ- + Λ') ⁄ which is equal to zero, the fit to the transient data yields Λ' (Λ- ⁄ + Λ') = 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The transient optical data was fitted at each time delay and driving frequency, yielding the time and frequency dependence of the superfluid fractions shown in figures 2(e), 3(e), and 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Extracting the frequency dependent photosusceptibility In figure 4(b) we introduce a figure of merit, referred to as the ‘photosusceptibility’, which can be used to quantitatively compare the efficiency with which the metastable light-induced superconducting state is generated in K3C60 for different excitation frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For each excitation photon energy, transient optical spectra were measured at different excitation fluences ℱ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' From these fluence dependent spectra we extract the loss in spectral weight of 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (𝜔) after photoexcitation in the 5-10 meV spectral range, calculated as: 𝑆𝑊𝐿(ℱ) = Z 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 9:(𝜔) − 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' #;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='&<&(𝜔, ℱ) 𝑑𝜔 !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=') meV/ℏ B meV/ℏ where 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 9:(𝜔) and 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' #;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='&<&(𝜔, ℱ) are the 𝜎!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (𝜔) spectra measured in equilibrium and upon photoexcitation respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The 𝑆𝑊𝐿(ℱ) data is then fitted with the following phenomenological function: 𝐴 \\ 1 1 + 𝐵𝑒2CDℱ 1 − 1 2] 27 where ℱ represents the excitation fluence and 𝐴, 𝐵 are free parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The ‘photosusceptibility’ plotted in figure 4(b) is equal to 𝐵, which is the gradient of this function evaluated at zero fluence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 shows the fluence-dependent data and corresponding fit for one exemplary dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: Extracting photosusceptibility from the fluence-dependent data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Lost spectral weight in the real part of the optical conductivity between 5 and 10 meV as a function of fluence (red circles), measured 10 ps after photoexcitation at 100 K with a pump spectrum centered at 41 meV (10 THz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The fit is shown as a solid green line, with the gradient at zero fluence (which we define as the photosusceptibility) shown as a dashed blue line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The data in this figure was reconstructed under the assumption of a square root dependence of the change in refractive index on excitation fluence (see supplementary section S6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Density functional theory calculations In this section, we address how the displacement of phonon modes affects the electronic properties of K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Specifically, we consider the molecular orbitals and their response to the change in the crystal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' To carry out this investigation, a first-principles approach based on density functional theory (DFT) was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The starting point is the unit cell of K3C60 containing sixty carbon and three potassium atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Before computing 28 the phonon spectrum, this unit cell is structurally relaxed, and the resulting lattice constants and atomic coordinates are listed in table S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Next, the phonon spectrum of K3C60 is computed from the force constant matrix utilizing a finite displacement approach12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In total, there are 186 non-translational phonon modes covering the symmetries of point group m-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Specifically, there are 24 Tu, 7 Eu, 23 Tg, 8 Eg, and 8 Ag modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Note that only the modes of Tu character are infrared active, and we list their computed frequencies in the table S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' We utilized a frozen phonon approach to estimate the impact of these distortions on the molecular levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Therefore, we modulated our equilibrium crystal structure with the eigen-displacements of these modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' We then created a low energy Hamiltonian for these structures by computing the maximally localized Wannier functions for the valence band electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Note that since the three valence bands are well separated in energy from other orbital-like bands our method does not require a disentanglement procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Our calculations focused on the three degenerate t1u molecular levels at the Fermi energy, which we mapped out from DFT wave functions as maximally-localized Wannier functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In the equilibrium structure, the onsite energy of these molecular levels is degenerate;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' however, deforming the crystal by applying a T1u polar distortion lifts this degeneracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Thereby, similar to a Jahn-Teller distortion, the symmetry breaking of the crystal structure splits the level into a double and a single degenerate orbital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For the 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 meV and 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='4 meV phonon modes, this splitting manifests as a lowering in the energy of the double degenerate orbital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A schematic visualization of this is depicted in the inset to figure S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Diagrams illustrating the distortion of the C60 molecule for the 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 meV Lattice vectors a 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='175 Å Alpha 90˚ 90˚ 90˚ b 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='175 Å Beta c 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='175 Å Gamma Atomic positions according to Space Group 202 (Fm-3) Element Wykoff label X y c C H 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='00000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='54991 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='24682 C I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='58242 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='10057 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='21408 C I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='66275 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='05092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='18294 K C 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='25000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='25000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='25000 K A 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='00000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='00000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='00000 Table S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: Structural parameters of K3C60 from first principles computations 29 and 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='4 meV modes (labelled ‘A’ and ‘B’ and corresponding to mode numbers 4 and 21 in table S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 respectively) are shown in figure S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Besides this qualitative difference of the phonon-mode distortion on the molecular levels, we also examined the strength of the induced splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' From group-theory, the size of the splitting scales with the square of the distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1(a) displays how the splitting develops as a function of the fluence of the incoming THz pulse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Each phonon mode distortion was weighted according to its eigenfrequency and mode effective charge in this plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For the same strength of the driving electric field, the splitting induced by phonon A produces a more significant separation of the t1u levels compared to phonon B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Due to the square scaling of the splitting with the electric field, this effect is further enhanced at higher field strengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The computations were performed with the Vienna ab-initio simulation package VASP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='213-15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For the phonon calculations, we used the Phonopy software package16 and the Wannier90 package for wannierization12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The computations further utilized Number: ℎ𝜈#56# (meV) 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 2 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='4 4 (A) 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 5 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='3 6 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 7 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='6 8 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 9 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='6 10 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='9 11 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='9 12 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 13 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0 14 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='6 15 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='8 16 147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5 17 148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='3 18 149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='8 19 163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='7 20 165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='4 21 (B) 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='4 22 176.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='9 23 184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='8 24 185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='3 Table S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2: List of the IR active phonon modes of Tu symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 30 pseudopotentials generated within the Projected Augmented Wave (PAW) method16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Specifically, the following default potentials were used: C 2s22p2 and K 3s23p64s1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The Generalized Gradient Approximation (GGA17) approximation for the exchange- correlation potential was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' For the final numerical setting, a 4x4x4 Monkhorst18 generated k-point-mesh sampling of the Brillouin zone and a plane-wave energy cutoff of 600 eV were chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The calculations were re-iterated self-consistently until the change in total energy converged within 10-8 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: Effect of vibrational distortions on the t1u molecular levels from first-principle computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' (a) shows the induced splitting of the molecular orbital of t1u symmetry at the Fermi energy (as illustrated by the inset) as a function of drive fluence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The two curves represent the effect of the two distinct T1u IR-phonon modes with eigenfrequencies of 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2 (red) and 173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='4 (blue) meV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The eigen displacement of these modes are shown in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Note, that due to the symmetry character of the phonon modes the t1u level split into a single and double degenerate orbital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Lastly, in (c) we show the induced splitting as a function of frequency for a fixed fluence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Here we consider the whole spectrum of T1u IR modes of K3C60, as listed in table S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Local electronic hamiltonian calculations The Hamiltonian proposed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 19 in order to model superconductivity in alkali-doped fullerides is based on an effective negative Hund’s coupling J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' It arises from a combination of the usual Hund’s coupling with a dynamical Jahn-Teller distortion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This causes states featuring intra-orbital pairing on a buckyball to be energetically favourable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Using ab-initio calculations, B 31 values of the intra-orbital interaction U = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='826 eV and of J = −18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5meV were predicted for K3C6020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The phase diagram for the A3C60 family of compounds was computed using DMFT starting from this Hamiltonian and was found to be in quantitative agreement with experimental data21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The Hamiltonian can be written as: 𝐻 = 𝐻Intra + 𝐻Inter + 𝐻Pairhop + 𝐻Spinswap with an intra-orbital interaction with magnitude U given by: 𝐻Intra = 𝑈 R 𝑛7,↑𝑛7,↓ U 7 where 𝑛7,V = 𝑎7,V W 𝑎7,V is the number operator for a spin down electron on orbital i with spin 𝜎 ∈ {↑, ↓}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 𝑎7,V W and 𝑎7,V are fermion creation and annihilation operators, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The inter- orbital interaction appears as: 𝐻Inter = (𝑈 − 2𝐽) R R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 − δ7X/𝑛7,↑𝑛X,↓ U X U 7 + (𝑈 − 3𝐽) R R R 𝑛7,V𝑛X,V 72!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' X U 7 V with δ7X denoting the Kronecker delta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' which, given that J is negative, makes these terms higher in energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In addition, there is a pair hopping term, which corresponds to a transfer of a pair of electrons from one orbital to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' It is given by: 𝐻Pairhop = 𝐽 R R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 − δ7X/𝑎7,↑ W 𝑎7,↓ W 𝑎X,↓𝑎X,↑ U X U 7 This term was found to be crucial for the appearance of superconductivity21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Finally, there is a “spin swapping” term, where two opposite spins exchange orbitals: −𝐽 R R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1 − δ7X/𝑎7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='↑ W 𝑎7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='↓𝑎X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='↓ W 𝑎X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='↑ U X U 7 32 When restricting ourselves to a Hilbert space where the three degenerate orbitals are populated by three electrons (as is appropriate for A3C60 in the atomic limit),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' we can use a basis given by the different possible arrangements in which the orbitals can be populated: {|↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑↓ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|↑ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑↓⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|↑↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑↓⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|↑↓ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' |↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↓,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↓⟩,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='|↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' ↑⟩} as well as a second set of states created by flipping all spins in the set above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' In this basis, the Hamiltonian takes on the form: 𝐻m − (3𝑈 + 5𝐽)𝐼o = −𝐽 ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 +2 −1 +1 0 0 0 0 0 0 0 −1 +2 −1 0 0 0 0 0 0 0 +1 −1 +2 0 0 0 0 0 0 0 0 0 0 +4⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ where 𝐼o is the identity matrix, which encodes an overall energy offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' This matrix is block- diagonal, meaning that different sectors of the Hilbert space are not coupled to each other: For example, there is no term that destroys or creates pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Because of the inverted Hund’s coupling, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' because J is negative, the stretched state |↑, ↑, ↑⟩ as well as its global spin-flip partner |↓, ↓, ↓⟩ are now the most energetic local eigenstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The local ground state is 6-fold degenerate, with an exemplary instance given by: |𝑔!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='⟩ = (|↑, ↑↓ ,0⟩ +|↑ ,0, ↑↓⟩)/√2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' it is a state where one singlet pair of electrons has de- localized over two orbitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The first excited manifold is 10-fold degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Six of those states are of the type |𝑒!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='⟩ = ((|↑, ↑↓ ,0⟩ −|↑ ,0, ↑↓⟩)/√2 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' identical to the ground state except for the phase of the de-localized singlet pair (and hence corresponding to a different local angular momentum) – as illustrated in Figure S10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The energy difference between these two manifolds is given by 2J=37meV, remarkably close to the observed resonance in the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' However, several questions remain in order to determine whether an excitation of this transition is responsible for the experimental observation: 33 Firstly, how does the light field of the laser couple to this excitation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' As the size of a buckyball is comparable to the distance between buckyballs both inter-site and intra-site driving terms may be comparable in terms of the associated energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Understanding possible inter-site driving terms (arising from the oscillating energy difference between neighbouring sites, given by the electric field multiplied with the charge and the lattice spacing) will require a calculation featuring multiple buckyballs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Locally, because the dynamical Jahn- Teller distortion causes the populated orbitals to be superpositions of several undistorted orbitals, we may expect the electric field to lift the orbital degeneracy, for example through an orbital offset term of the type 𝐻offset = Δ(𝑛U,↑ + 𝑛U,↓), where Δ encodes the amplitude of the drive and is oscillating in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Such a term would in fact cause an excitation from |𝑒!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='⟩ to |𝑔!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='⟩, but it would not populate any un-paired state (which are not affected by this driving term, as all orbitals are equally occupied).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Secondly, K3C60 has an electronic bandwidth of about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='5eV21, meaning that the system is far away from the atomic limit (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' zero inter-site tunneling).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nevertheless, because the excitation here does not require inter-site tunneling (unlike e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', double occupancy creation in a regular one-band Hubbard model), it may remain sufficiently separable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Finally, how does this excitation generate superconductivity?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Indeed, the Suhl-Kondo mechanism suggests that in a multi-band system, pairs in any local superposition can contribute to superconductivity, but how the generation of excited-state pairs can lead to superconducting properties starting from a normal state remains to be investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Figure S10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content='1: Ground state and first excited state of the local Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The yellow lines indicate the phase of the pair which is de-localized over two orbitals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The energy spacing between these two states is given by -2J 2J 34 References 1 Mitrano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Possible light-induced superconductivity in K3C60 at high temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature 530, 461-464, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 2 Cantaluppi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Pressure tuning of light-induced superconductivity in K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 14, 837-841, (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 3 Budden, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Evidence for metastable photo-induced superconductivity in K3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature Physics 17, 611-618, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 4 Plaskett, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Schatz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' On the Robinson and Price (Kramers—Kronig) Method of Interpreting Reflection Data Taken through a Transparent Window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The Journal of Chemical Physics 38, 612-617, (1963).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 5 Degiorgi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Optical properties of the alkali-metal-doped superconducting fullerenes: K3C60 and Rb3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review B 49, 7012-7025, (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 6 Degiorgi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Briceno, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Fuhrer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Zettl, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Wachter, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Optical measurements of the superconducting gap in single-crystal K3C60 and Rb3C60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Nature 369, 541-543, (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 7 Liu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 42, 129-131, (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 8 Kindt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Schmuttenmaer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Theory for determination of the low-frequency time- dependent response function in liquids using time-resolved terahertz pulse spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' The Journal of Chemical Physics 110, 8589-8596, (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 9 Schmuttenmaer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Exploring Dynamics in the Far-Infrared with Terahertz Spectroscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Chemical Reviews 104, 1759-1780, (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 10 Born, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Wolf, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Principles of Optics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 7th edn, (Cambridge University Press, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 11 Buzzi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Higgs-Mediated Optical Amplification in a Nonequilibrium Superconductor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review X 11, 011055, (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 12 Marzari, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Vanderbilt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Maximally localized generalized Wannier functions for composite energy bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review B 56, 12847-12865, (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 35 13 Kresse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Furthmüller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Computational Materials Science 6, 15-50, (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 14 Kresse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Hafner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Ab initio molecular dynamics for open-shell transition metals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review B 48, 13115-13118, (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 15 Kresse, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Furthmüller, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review B 54, 11169-11186, (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 16 Togo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Tanaka, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' First principles phonon calculations in materials science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Scripta Materialia 108, 1-5, (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 17 Perdew, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Burke, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Ernzerhof, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Generalized Gradient Approximation Made Simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review Letters 77, 3865-3868, (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 18 Monkhorst, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Pack, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Special points for Brillouin-zone integrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Physical Review B 13, 5188-5192, (1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 19 Capone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Fabrizio, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Castellani, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Tosatti, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Strongly Correlated Superconductivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science 296, 2364-2366, (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 20 Nomura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Sakai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Capone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Arita, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Science Advances 1, e1500568, (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' 21 Nomura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Sakai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=', Capone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' & Arita, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Exotics-wave superconductivity in alkali- doped fullerides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'} +page_content=' Journal of Physics: Condensed Matter 28, 153001, (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7dFAT4oBgHgl3EQfoR1F/content/2301.08633v1.pdf'}