diff --git "a/6tAyT4oBgHgl3EQfpvgE/content/tmp_files/load_file.txt" "b/6tAyT4oBgHgl3EQfpvgE/content/tmp_files/load_file.txt" new file mode 100644--- /dev/null +++ "b/6tAyT4oBgHgl3EQfpvgE/content/tmp_files/load_file.txt" @@ -0,0 +1,2367 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf,len=2366 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='00529v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='RT] 2 Jan 2023 HARMONIC ANALYSIS ON THE FOURFOLD COVER OF THE SPACE OF ORDERED TRIANGLES I: THE INVARIANT DIFFERENTIALS HANLONG FANG, XIAOCHENG LI, AND YUNFENG ZHANG Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Denote by SLn(R) the group of n × n real matrices with determinant one, A the subgroup consisting of the diagonal matrices with positive entries, and SLn(R)/A the manifold of left cosets gA, g ∈ SLn(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In this paper, we will be concerned with the harmonic analysis on the homogeneous space SLn(R)/A when n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In particular, we provide explicit generators and their relations for the algebra of the invariant differential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Then we prove that some of the non-central generators are essentially self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Contents 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Introduction 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Structure of the Algebra of the Invariant Differentials 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Generators of the invariant differentials on SLn(R)/A 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Relations among the generators 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The center of the algebra of the invariant differentials 11 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Essential Self-Adjointness 19 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Essential self-adjointness of the central elements 19 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Reduction to the density of C∞ c (X) in Dom(∆) 20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Coordinate charts induced by the Euler angles 21 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Presence of left derivatives in D12 22 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Proof of the density and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='3 28 Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Computations in the Euler-Iwasawa Coordinates 36 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Explicit formulas for the generators of the left derivatives on SL3(R)/A 36 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Explicit formulas for the generators of the left-invariant differentials on SL3(R) 42 References 46 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Introduction Denote by SLn(R) the group of n × n real matrices with determinant one, A the subgroup consisting of the diagonal matrices with positive entries, and SLn(R)/A the manifold of left cosets gA, g ∈ SLn(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In this paper, we will be concerned with the harmonic analysis on the homogeneous space SLn(R)/A when n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In particular, we will restrict attention to the commutation relations and essential self-adjointness of the invariant differential operators 1 2 HANLONG FANG, XIAOCHENG LI, AND YUNFENG ZHANG on SL3(R)/A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' spectral decomposition of the invariant differential operators and its interaction with Plancherel theorems are left for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The space SL3(R)/A distinguishes itself among homogeneous spaces in various ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Firstly, it has a natural interpretation as the fourfold cover of the space of nondegenerate Schubert triangles in the plane ([Sc]), of which the compactification is well studied as of a homogeneous space of complexity 1 ([Sem], [Ti]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' One may wish to investigate the Plancherel type formulas (see [GGV], [GG] for the relation with the Radon transforms), via the Bernstein maps and the Maass-Selberg relations (see [SV], [DKKS] for the spherical case).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Secondly, SL3(R)/A is one of the simplest examples of non-spherical homogeneous spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' These spaces exhibit a very different nature compared with spherical ones, and very little of their harmonic theory is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' For instance, the finite multiplicity theorem for induction does not hold anymore ([KO]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' the algebra of invariant differential operators is a noncommutative algebra instead of a polynomial ring ([Kn]);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' the representation theory of the ring of bi-invariant functions is mysterious as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' For our case, at least one knows, a priori by the systematic work of Benoist-Kobayashi ([BK1], [BK2], [BK3], [BK4], [BIK]), that the natural unitary representation of SLn(R) in L2 (SLn(R)/A) is tempered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' From the technical perspective, the investigation of the spectral theory of pseudo-Riemannian manifolds is challenging, for the traditional elliptic theory is not applicable to the Laplace- Beltrami operators with mixed signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' To remedy the situation, the analytic methods are always fused with the peculiar geometry of the underlying manifold related to the representation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The considerable efforts have been made mainly on the symmetric spaces, such as the group manifolds ([HC1], [HC2]), the real hyperboloids ([RLN], [LNR1], [LNR2], [Sh], [St], [Ros], [Fa], [Sek], [Mo]), special symmetric spaces ([Ma], [Sa], [DP], [KD], [BH], [Ha]), and general symmetric spaces ([FJ], [OM], [OS], [Ba], [O], [De], [BS1], [BS2]), and, more recently, certain locally symmetric spaces and spherical varieties ([KK1], [KK2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In the present situation, SL3(R)/A has an inherent approachable geometry in spite of the rather involved analysis due to its non-sphericity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' For instance, the underlying manifold is diffeomorphic to SO3(R) × R3, so that an extensive calculation is possible, just as the hyperboloid case, where the usage of the spherical coordinates of the underlying product space Sp−1 × Sq−1 × R is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Before describing our results in more detail, we first set certain notations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' To treat in a unified fashion, let G denote SL3(R), g the Lie algebra of G, and U(g) the universal enveloping algebra of the complexification of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Denote by C∞(G) the space of complex-valued smooth functions on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Then, the infinitesimal action R on C∞(G) induced by the right regular representation of G, maps U(g) into the algebra of algebraic differentials on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' More precisely, R acts on u = X1X2 · · · Xk ∈ U(g) by (Ruf) (g) := (R (X1 · · · Xk) f) (g) := ∂ ∂t1 ���� t1=0 · · ∂ ∂tk ���� tk=0 f(g exp (t1X1) · · · exp (tkXk)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' (1) Here X1, X2, · · · , Xk ∈ g, and f ∈ C∞(G);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' the exponential map is given by exp(X) := γ(1), where γ : R → G is the one-parameter subgroup of G whose tangent vector at the identity is equal to X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' It is easy to verify that Ru, u ∈ U(g), is a left G-invariant differential operators on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Denote by D(G) the algebra of the left G-invariant differential operators on G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' HARMONIC ANALYSIS ON THE SPACE OF ORDERED TRIANGLE 3 For a closed subgroup H ⊂ G, denote by D(G/H) the algebra of G-invariant differential operators on the homogeneous space G/H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Denote by π : G → G/H the natural projection, and h the Lie algebra of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Define DH(G) := {D ∈ D(G) | D(f ◦ Rh) ◦ R−1 h = Df, ∀h ∈ H and f ∈ C∞(G)}, (2) where Rh : g �→ gh is the right translation of G for h ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Assuming G and H are reductive, we have the standard isomorphism (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='6 in Chapter 2 of [He]) DH(G)/ � DH(G) ∩ D(G)h � ∼= D(G/H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' (3) It is induced by the map µ : DH(G) → D(G/H), such that for each D ∈ DH(G), µ(D) is the element of D(G/H) such that (µ(D)f) ◦ π = D(f ◦ π) for all smooth functions f on G/H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' (4) Denote by Eij the 3 × 3 matrix unit with a 1 in the ith row and jth column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' For distinct i, j, k ∈ {1, 2, 3}, define differential operators on SL3(R)/A Dij = µ � 1 2 � σ∈S2 R � Eσ(i)σ(j)Eσ(j)σ(i) � � , (5) and Dijk = µ � 1 6 � σ∈S3 R � Eσ(i)σ(j)Eσ(j)σ(k)Eσ(k)σ(i) � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' (6) Note that Dij = Dji and Dijk = Djki = Dkij.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In the first part of the paper, we prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' D (SL3(R)/A) is the noncommutative associative algebra generated over C by {D12, D13, D23, D123, D213} with relations \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 [D123, D213] = 0, [Dij, Dik] = Dijk − Dikj, i, j, k ∈ {1, 2, 3} are distinct, [Dijk, Dij] = DjkDij − DijDik, i, j, k ∈ {1, 2, 3} are distinct, 2 (D123D213 + D213D123 − D12D23D31 − D13D32D21) = (D23 − D13 − D12)2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' (7) The center of D (SL3(R)/A) is a polynomial ring in D123 + D213 and D12 + D23 + D13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In the theory of harmonic analysis on homogeneous spaces, one of the central problems is whether a symmetric invariant differential operator has a unique self-adjoint extension, as it would enable a simultaneous study of spectral decomposition of both the regular representation and the invariant differential operators (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' see [BS1], [BS2] for the case of reductive symmetric spaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' There is considerable literature on essential self-adjointness for natural operators on a complete Riemannian or Hermitian manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' See for instance [Ga1], [Ga2], [Ga3], [Roe], [Co], [Ri] for the Hodge-Laplace-Beltrami operator, [AV] for the ¯∂-Laplacian, [P], [W] for the Dirac operator, and [Ch] for certain first order differential operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' For differential operators on Rn, much more is known ([RS]), and we mention here that certain ellipticity ([IK]), or semi- boundedness together with temperedness ([Dev]), guarantees the essential self-adjointness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' 4 HANLONG FANG, XIAOCHENG LI, AND YUNFENG ZHANG For general homogeneous spaces, a classical result shows that the symmetric elements in the image of the center of the universal enveloping algebra are essentially self-adjoint ([Seg], [NS], or [Th]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' As it can be shown that the center of D (SL3(R)/A) equals the image of the center of U(sl3(R)), it follows Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Every symmetric differential operator in the center of D (SL3(R)/A) is es- sentially self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' For non-central elements, the most general result is due to Van den Ban [Ba], who established the essential self-adjointness of the symmetric invariant differential operators for semi-simple symmetric pairs, even if it is not a generalized Gelfand pair, semiboundedness is absent, or the underlying manifold is non-Riemannian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Beyond that, to the best of our knowledge, there is no general theory ensuring the essential self-adjointness in the pseudo-Riemannian setting, even for the Laplacian operators (see [KK1], [KK2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The major part of the paper is to devoted to Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The differential operators D12, D13, D23 on SL3(R)/A are essentially self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' We now briefly describe the basic ideas for the proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' We exploit the universal enveloping algebra to extract the algebraic structure of D(SL3(R)/A), and the normal form theory in [FH] to determine the center of D(SL3(R)/A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' To study the essential self-adjointness of symmetric operators, we modify the scheme of [Ba].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The elegant proof in [Ba] is to decompose the differential operator into a bounded sum of left derivatives so that the wild growth of the coefficients can be treated as bounded ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Unfortunately, in this non-spherical case, the left derivatives are too degenerate to span the whole space of invariant differentials in a mild way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' We make the observation that by choosing the cutoff functions and the mollifiers in a compatible way instead of separating the G˚arding type space as the operator core, one may gain extra decays to balance the extraordinary growth of the coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In fact, the chosen cutoff functions are annihilated by the wildest terms and contribute desired decays thereafter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The organization of the paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' §2 is devoted to the algebraic structure of D(SL3(R)/A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' We study the presence of left derivatives in the coordinate form of D12 in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='5, we establish the density of C∞ c (SL3(R)/A) in Dom(D12), and, as a consequence, prove Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The explicit formulas for the generators of the left derivatives and of the left invariant differentials are given in Appendices A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1 and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Acknowledgement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The authors appreciate greatly Professors N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Xu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Yu for many helpful discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' This research is supported by National Key R& D Pro- gram of China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' 2022YFA1006700).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The first author is partially supported by NSFC grant (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' 12201012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Structure of the Algebra of the Invariant Differentials 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Generators of the invariant differentials on SLn(R)/A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Let S(g) be the symmetric algebra over g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Then for a basis {X1, · · · , Xn} of g, S(g) can be identified with the algebra of polynomials � (k1,··· ,kn)∈Nn ak1···knXk1 1 · · · Xkn n , ak1···kn ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' (8) HARMONIC ANALYSIS ON THE SPACE OF ORDERED TRIANGLE 5 We have the following symmetrizer map λ : S(g) → D(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1 (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='3 in Chapter 2 of [He]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' There is a unique linear bijection λ from S(g) to D(G) such that λ(Xm) = R(Xm) for X ∈ g and m ∈ Z+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' More precisely, (λ(P)f)(g) := P � ∂ ∂t1 , · · · , ∂ ∂tn � f (g exp(t1X1 + · · · + tnXn)) ���� t1=···=tn=0 , (9) for P ∈ S(g) and f ∈ C∞(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' In particular (see Page 282 of [He]), λ(Y1 · · · Yk) = 1 k!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' � σ∈Sk R � Yσ(1) · · · Yσ(k) � , (10) where Y1, · · · , Yk ∈ g, and Sk is the symmetric group of degree n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Denote by Eij the n × n matrix unit with a 1 in the ith row and jth column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Define Xij := Eij, 1 ≤ i ̸= j ≤ n, Xll := Ell − Enn, 1 ≤ l ≤ n − 1, (11) which constitute a basis of sln(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' The algebra D(SLn(R)/A) is generated by � (µ ◦ λ) � Ei1i2Ei2i3 · · · Eik−1ikEiki1 � ���� 2 ≤ k ≤ n, 1 ≤ i1, i2, · · · , ik ≤ n i1, i2, · · · , ik are distinct � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' (12) Proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' By (3), the invariant differential operators on SLn(R)/A are induced from the left SLn(R) and right A invariant differential operators on SLn(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Then by (3), it suffices to prove that DA(SLn(R)) is generated by the elements in (12) and D(SLn(R))a, where a is the Lie algebra of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Take D ∈ DA(SLn(R)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' There is a polynomial PD such that λ(PD) = D by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' Arrange PD in the following lexicographic order, PD = ∞ � k=1 � 1≤i1≤i2≤···≤it≤···≤ik≤n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' 1≤jt≤n and (it,jt)̸=(n,n) for 1≤t≤k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6tAyT4oBgHgl3EQfpvgE/content/2301.00529v1.pdf'} +page_content=' if 1≤u