diff --git "a/4NE3T4oBgHgl3EQfogr8/content/tmp_files/load_file.txt" "b/4NE3T4oBgHgl3EQfogr8/content/tmp_files/load_file.txt"
new file mode 100644--- /dev/null
+++ "b/4NE3T4oBgHgl3EQfogr8/content/tmp_files/load_file.txt"
@@ -0,0 +1,1194 @@
+filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf,len=1193
+page_content='ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS FEDERICO GLAUDO AND ANDREA CIPRIETTI Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let A be a multiset with elements in an abelian group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let FS(A) be the multiset containing the 2|A| sums of all subsets of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We study the reconstruction problem “Given FS(A), is it possible to identify A?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', and we give a satisfactory answer for all abelian groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We prove that, up to identifying multisets through a natural equivalence relation, the function A �→ FS(A) is injective (and thus the reconstruction problem is solvable) if and only if every order n of a torsion element of the abelian group satisfies a certain number-theoretical property linked to the multiplicative group (Z/nZ)∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The core of the proof relies on a delicate study of the structure of cyclotomic units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Moreover, as a tool, we develop an inversion formula for a novel discrete Radon transform on finite abelian groups that might be of independent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Introduction Let G be an abelian group and let A = {a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , a|A|} be a finite multiset (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', a set with repeated elements) with elements in G (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1 for a formal definition of multiset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Its subset sums multiset FS(A), that is, the multiset containing the 2|A| sums over all subsets of A (taking into account multiplicities), is defined as FS(A) := � � i∈I ai : I ⊆ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , |A|} � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We study the following reconstruction question: If one is given FS(A), is it possible to identify A?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' As we will see, this strikingly simple question features a rich structure and its solution spans a wide range of mathematics: from the theory of cyclotomic units, to an inversion formula for a novel discrete Radon transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Before going deeper into the problem, let us give some background on related results in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If, instead of FS(A), one is given the sums over all the �|A| s � subsets with fixed size equal to s (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', if s = 2, the sums over all pairs), the reconstruction problem has been studied in the case of a free abelian group G = Zd [SS58;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' GFS62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For pairs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' s = 2), the reconstruction is possible when the size of A is not a power of 2 [SS58, Theorem 1 and Theorem 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For s-subsets with s > 2, the reconstruction is possible if the size of A does not belong to a finite subset of bad sizes [GFS62, Section 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' See the recent survey [Fom19] for a detailed presentation of the history of this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It might seem that if one is only provided with the sums of s-subsets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', subsets with size s) then the reconstruction is strictly harder than if one is provided the sums of all subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is not true because the information is not ordered and 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='04635v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='NT] 11 Jan 2023 2 FEDERICO GLAUDO AND ANDREA CIPRIETTI thus, even if we have more information, it is also harder to determine which value corresponds to which subset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us now go back to the reconstruction problem for FS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The first important observation is the following one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a multiset A and a subset B ⊆ A whose sum equals 0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' � b∈B b = 0), if we flip the signs of elements of B then FS does not change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' So, if A′ := (A \\ B) ∪ (−B), then FS(A) = FS(A′) (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1 for an explanation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A B C A′ −(B \\ C) C \\ B Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof by picture of A ∼0 A′ =⇒ FS(A) = FS(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The set C in A (highlighted in gray) and the set (C\\B)∪(−(B\\C)) in A′ (highlighted in gray) have the same sum because the sum of the elements in B is assumed to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thus, we have a bijection between the subsets of A and A′ which keeps the sum unchanged, hence FS(A) = FS(A���).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Hence, if we only know FS(A), the best we can hope for is to identify the equiv- alence class of A with respect to the following equivalence relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given two multisets A, A′ with elements in G, we say that A ∼0 A′ if and only if A′ can be obtained from A by flipping the signs of the elements of a subset of A with null sum, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', if there exists B ⊆ A, with � b∈B b = 0, such that A′ = (A \\ B) ∪ (−B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have already observed that if A ∼0 A′ then FS(A) = FS(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If the group is G = Z, this turns out to be an “if and only if” (see Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3), while if G = Z/2Z it is not (indeed, in Z/2Z one has FS({0, 1}) = {0, 0, 1, 1} = FS({1, 1})).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is natural to consider the class of abelian groups such that the double implication holds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' the fibers of FS coincide with the equivalence classes of ∼0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A group G is FS-regular if, for any two multisets A, A′ with ele- ments in G, it holds FS(A) = FS(A′) if and only if A ∼0 A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have already observed that Z/2Z is not FS-regular;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' moreover, any group con- taining a subgroup that is not FS-regular cannot be FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The next smallest non-FS-regular group is elusive;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' in fact, it turns out that Z/nZ is FS-regular for n = 3, 5, 7, 9, 11, 13, 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' But Z/17Z is not FS-regular, and then Z/nZ is FS-regular for n = 19, 21, 23, 25, 27, 29 and not FS-regular for m = 31, 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' These small exam- ples suggest that the FS-regularity of G may be related to the behavior of powers of two in G (notice that 17, 31, 33 are adjacent to a power of two).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Our main result is the characterization of FS-regular groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In order to state our result, we need to introduce a subset of the natural numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let OFS be the set of odd natural numbers n ≥ 1 such that (Z/nZ)∗ is covered by {±2j : j ≥ 0};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' more precisely, for each x ∈ Z relatively prime with n there exists j ≥ 0 such that either x − 2j or x + 2j is divisible by n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 3 Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The first few elements of OFS are OFS = {1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29, 35, 37, 39, 45, 47, 49, 53, 55, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' }, and the first few missing odd numbers are (2N + 1) \\ OFS = {17, 31, 33, 41, 43, 51, 57, 63, 65, 73, 85, 89, 91, 93, 97, 99, 105, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us remark that if n ∈ OFS then also all divisors of n belong to OFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Moreover, one can show that if p, q, r are distinct odd primes, then pqr ̸∈ OFS, and therefore if n ∈ OFS then n has at most two distinct prime factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We can now state our main theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1 (Characterization of FS-regular groups).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An abelian group G is FS- regular if and only if ord(g) ∈ OFS for all g ∈ G with finite order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' As a tool in the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1 (see Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) we define a novel discrete Radon transform for abelian groups and we prove an inversion formula for it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We refer to Section 5 for some motivation on the definition and for an in-depth discussion of the existing related literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since the invertibility of the Radon transform may have other applications beyond the scope of this paper, we state it here for the interested readers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 (Invertibility of the discrete Radon transform).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, d ≥ 1 be pos- itive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a function f : (Z/nZ)d → C, its discrete Radon transform Rf = Rn,df : Hom((Z/nZ)d, Z/nZ) × Z/nZ → C is defined as Rf(ψ, c) = � x: ψ(x)=c f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This discrete Radon transform is invertible and admits an inversion formula (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Sketch of the proof and structure of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us briefly describe the strategy that the proof follows, postponing a more detailed presentation to the dedicated sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For the negative part of the statement, it is sufficient to show that Z/nZ is not FS-regular if n ̸∈ OFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For this, we construct an explicit counterexample in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proving that if the orders belong to OFS then the group is FS-regular is more complicated and relies on some nontrivial properties of the units of cyclotomic fields and on the inversion formula for a novel discrete Radon transform on finite abelian groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The proof is divided into three steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Step 1: Proof for G = Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Through the polynomial identity � s∈FS(A) ts ≡ � a∈A (1 + ta) (mod tn − 1), we reduce the FS-regularity of Z/nZ to the study of the kernel of the map Zn ∋ x = (x0, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xn−1) �→ � n−1 � j=0 (1 + ωj d)xj� d|n, 4 FEDERICO GLAUDO AND ANDREA CIPRIETTI where ωd ∈ C is a d-th primitive root of unity and the codomain of the map consists of tuples indexed by the divisors of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to a dimensional argument, identifying the kernel of such map is equivalent to identifying its image, which is exactly what we do in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is the hardest and most technical proof of the whole paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Up to this point, we have used only that n is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The fact that n ∈ OFS is needed in the computation of the rank of the image, which relies heavily on the theory of cyclotomic units (see Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This step is carried out in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Step 2: Z/nZ is FS-regular =⇒ (Z/nZ)d is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Take A, A′ multisets with elements in (Z/nZ)d such that FS(A) = FS(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a homomorphism ψ : (Z/nZ)d → Z/nZ, by linearity, it holds FS(ψ(A)) = FS(ψ(A′)), and since Z/nZ is FS-regular this implies that ψ(A) ∼0 ψ(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' So, we know that ψ(A) ∼0 ψ(A′) for all homomorphisms ψ : (Z/nZ)d → Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In order to deduce that A ∼0 A′, we introduce a novel discrete Radon transform (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) and we prove an inversion formula (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 and Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2) which may be of indepen- dent interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This allows us to reconstruct a multiset B ∈ M((Z/nZ)d) from its projections {φ(B) : φ ∈ Hom((Z/nZ)d, Z/nZ)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This step is performed in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Step 3: G is FS-regular =⇒ G ⊕ Z is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In this step, we exploit crucially that Z is totally ordered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The argument is short and purely combinatorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is done in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Once these three steps are established, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1 follows naturally, as shown in Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us remark here that our proof is not constructive, hence it does not provide an efficient algorithm to find the ∼0-equivalence class of A if FS(A) is known1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To make the paper accessible to a broad audience, in Section 2 we recall basic facts about multisets, abelian groups, and cyclotomic units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The authors are thankful to Fabio Ferri for providing valu- able suggestions and references about the theory of cyclotomic units, and also to Michele D’Adderio and Elia Bru`e for their comments and feedback on an early ver- sion of the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The second author is supported by the National Science Foundation under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' DMS-1926686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notation and Preliminaries 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Multisets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A multiset with elements in a set X is an unordered collection of elements of X which may contain a certain element more than once [Bli89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For example, {1, 1, 2, 2, 3} is a multiset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Rigorously, a multiset A is encoded by a function µA : X → Z≥0 (Z≥0 denotes the set of nonnegative integers) such that µA(x) represents the multiplicity of the element x in A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For example, if A = {1, 1, 2, 2, 3} then µA(1) = 2, µA(2) = 2, µA(3) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1The nonconstructive part of the proof is contained Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In fact, we show that a certain map is injective by proving its surjectivity and then applying a standard dimension argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This kind of reasoning does not produce an efficient way to invert the map we have proven to be injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 5 A multiset A is finite if � x∈X µA(x) < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The cardinality of a finite multiset A ∈ M(X) is given by |A| := � x∈X µA(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a set X, let us denote with M(X) the family of finite multisets with elements in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us define the usual set operations on multisets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that all of them are the natural generalization of the standard version when one takes into account the multiplicity of elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix two multisets A, B ∈ M(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Membership: We say that x ∈ X is an element of A, denoted by x ∈ A, if µA(x) ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Inclusion: We say that A is a subset of B, denoted by A ⊆ B, if µA(x) ≤ µB(x) for all x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Union: The union A∪B ∈ M(X) is defined as µA∪B(x) := µA(x)+µB(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Hence, {1} ∪ {1, 2} = {1, 1, 2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Cartesian product: The Cartesian product A × B ∈ M(X × X) is defined as µA×B((x1, x2)) = µA(x1)µB(x2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Difference: If A ⊆ B, the difference B \\A is defined as µB\\A(x) := µB(x)−µA(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Pushforward: Given a function f : X → Y , the pushforward f(A) ∈ M(Y ) of the multiset A (denoted also by {f(a) : a ∈ A}) is defined as µf(A)(y) = � x∈f −1(y) µA(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Power set: The power set of A (the family of subsets of A), denoted by P(A) ∈ M(M(X)), is a multiset defined recursively as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For the empty mul- tiset, we have P(∅) := {∅};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' otherwise let a ∈ A be an element of A and define P(A) := P(A \\ {a}) ∪ � A′ ∪ {a} : A′ ∈ P(A \\ {a}) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that |P(A)| = 2|A|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Whenever we iterate over the subsets of A (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', {f(A′) : A′ ⊆ A} or � A′⊆A f(A′)), the iteration has to be understood over P(A) (hence the subsets are counted with multiplicity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Taking the complement is an involution of the power set, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', P(A) = {A \\ A′ : A′ ∈ P(A)}, and we have the following identity for the power set of a union P(A ∪ B) = {A′ ∪ B′ : (A′, B′) ∈ P(A) × P(B)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Sum (and product): If the set X is an additive abelian group, we can define the sum � A ∈ X of the elements of A as � A := � x∈X µA(x)x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Analogously, if X is a multiplicative abelian group, one can define the prod- uct � A of the elements of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Abelian Groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us recall some basic facts about abelian groups that we will use extensively later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 6 FEDERICO GLAUDO AND ANDREA CIPRIETTI Any finitely generated abelian group is isomorphic to a finite product of cyclic groups [Lan02, Chapter I, Section 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We denote with Z/nZ the cyclic group with n elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given some elements g1, g2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , gk ∈ G of an abelian group, we denote with ⟨g1, g2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , gk⟩ the subgroup generated by such elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given an element g ∈ G, its order (which may be equal to ∞) is denoted by ord(g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For an abelian group G, its rank rk(G) is the cardinality of a maximal set of Z-independent2 elements of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us list some useful properties of the rank (see [Lan02, Chapter I and XVI]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Any finitely generated abelian group G is isomorphic to Zrk(G) ⊕ G′ where G′ is a finite abelian group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given two abelian groups G, H, it holds rk(G ⊕ H) = rk(G) + rk(H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For a homomorphism φ : G → H of abelian groups, it holds rk(G) = rk(ker φ) + rk(Im φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An abelian group has null rank if and only if all elements have finite order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let G1, G2, G3 be three abelian groups and φ1 : G1 → G2, φ2 : G2 → G3 be two homomorphisms with full rank, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' rk(Im φ1) = rk(G2) and rk(Im φ2) = rk(G3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Then φ2 ◦ φ1 : G1 → G3 has full rank as well, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' rk(Im φ2 ◦ φ1) = rk(G3) Given an abelian group G, let us denote with G ⊗ Q its tensor product (as a Z-module) with Q (see [Lan02, Chapter XVI]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The dimension of G ⊗ Q as vector space over Q coincides with rk(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For a homomorphism φ : G → H of abelian groups, let φ⊗Q : G⊗Q → H⊗Q be its tensorization with Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It holds rk(Im φ) = dimQ(Im (φ ⊗ Q)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Units of cyclotomic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given n ≥ 1, let ωn := exp(2πi/n) be the prim- itive n-th root of unity with minimum positive argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The algebraic number field Q(ωn) is called cyclotomic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is well-known that the ring of integers of Q(ωn) coincides with Z[ωn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Our main focus is the group of units of Q(ωn), that consists of the invertible elements of its ring of integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For 0 < r < n and s ≥ 1 coprime with n, the element ξ := 1−ωrs n 1−ωrn is a unit of Q(ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Indeed ξ = 1+ωr n +· · ·+ω(s−1)r n ∈ Z[ωn] and, if u ∈ N is such that n divides us − 1, then ξ−1 = 1 − ωrus n 1 − ωrs n = 1 + ωrs n + · · · + ω(u−1)rs n ∈ Z[ωn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It turns out that these units are sufficient to generate a subgroup of finite index of the units of Q(ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The following statement follows from [Was97, Theorem 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any odd n ≥ 3, the multiplicative group Cn ⊆ C generated by �1 − ωrs n 1 − ωrn : 0 < r < n, s ≥ 1 coprime with n � is a subgroup of finite index of the units of Q(ωn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 2Some elements g1, g2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , gk ∈ G are Z-independent if, whenever � i aigi = 0 for some a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , ak ∈ Z, it holds a1 = a2 = · · · = ak = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 7 Thus, applying Dirichlet’s unit Theorem (see [Mar77, Theorem 38]), we are able to compute the rank of Cn (since it coincides with the rank of the group of units of Q(ωn)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any odd n ≥ 3, we have rk(Cn) = ϕ(n) 2 − 1, where ϕ is Euler’s totient function (and Cn is defined in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The units of Q(ωn) satisfy a family of nontrivial relations known as distribution relations (see [Was97, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 151]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We recall here the relations in the form we will need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that 1+ωj n is a unit for 1 ≤ j < n because of the identity 1+ωj n = 1−ω2j n 1−ωj n ∈ Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 (Distribution relations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n ≥ 1 be an odd integer and let p be one of its prime divisors3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any 0 ≤ j < n p , the identity p−1 � k=0 (1 + ωj+kn/p n ) = 1 + ωjp n holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The numbers {1 + ωj+kn/p n }0≤k
0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We claim that, for any 0 ≤ j < n, it holds (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) uS,j − 1 p p−1 � k=0 uS,j+km/p = uS′,j − 1 puS′,jp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We prove Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) by looking at the projections of both sides onto Qd/Dd and considering various cases depending on the divisor d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If d ̸∈ S, then d ̸∈ S′ (since S′ ⊆ S) and thus we have ud S,j − 1 p p−1 � k=0 ud S,j+km/p = 0 = ud S′,j − 1 pud S′,jp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If d ∈ S and υp(d) < υp(S), then d | m p and therefore ud S,j+km/p = [ed j+km/p]Dd = [ed j]Dd = ud S,j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since υp(d) < υp(S) implies that d ̸∈ S′, we deduce ud S,j − 1 p p−1 � k=0 ud S,j+km/p = ud S,j − 1 p p−1 � k=0 ud S,j = 0 = ud S′,j − 1 pud S′,jp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If d ∈ S and υp(d) = υp(S), then it holds (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4) � 0, m p mod d, 2m p mod d, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , (p−1)m p mod d � = � 0, d p, 2d p, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , (p−1)d p � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To prove the latter identity, notice that for any 0 ≤ k < p, we have � k m p mod d � = � k m d mod p �d p and therefore the identity between sets follows from the fact that m/d is not divisible by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 6Here υp(x) denotes the p-adic valuation of a nonzero integer x, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' the maximum exponent h ≥ 0 such that ph divides x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 14 FEDERICO GLAUDO AND ANDREA CIPRIETTI Exploiting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4) and recalling that vd p,j ∈ Dd, we obtain ud S,j − 1 p p−1 � k=0 ud S, j+km/p = � ed j − 1 p p−1 � k=0 ed j+km/p � Dd = � ed j − 1 p p−1 � k=0 ed j+kd/p � Dd = � ed j − 1 p(ed jp − vd p,j) � Dd = � ed j − 1 ped jp � Dd = ud S′,j − 1 pud S′,jp, where in the last steps we used that d ∈ S′ (which is equivalent to the assumptions d ∈ S and υp(d) = υp(S)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since we have covered all possible cases, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) is proven.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The set S is solvable, therefore the left-hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3) belongs to the image of Ψn ⊗ Q, and thus also uS′,j − 1 puS′,jp belongs to Im (Ψn ⊗ Q) for all 0 ≤ j < n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3, applied with vj := uS′,j, λ := 1/p, and σ(j) := (jp mod n), guarantees that also uS′,j belongs to the image of Ψn ⊗ Q for all 0 ≤ j < n, which proves that S′ is solvable as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ As a simple consequence of Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5, we claim that if S is solvable, then, for any prime divisor p of n and for any 0 ≤ h ≤ υp(n), we have that {s ∈ S : υp(s) = h} is also solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us prove it by induction on h, starting from h = υp(n) and going backward to h = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If {s ∈ S : υp(s) = υp(n)} is empty, then it is solvable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' otherwise we can apply Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5 and obtain again that it is solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Now, we assume that {s ∈ S : υp(s) = h′} is solvable for h′ > h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Then, since the difference of solvable sets is solvable, we deduce that ˜S := {s ∈ S : υp(s) ≤ h} is solvable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If {s ∈ S : υp(s) = h} is empty, then it is solvable;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' otherwise we can apply Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5 on the set ˜S and obtain again that {s ∈ S : υp(s) = h} is solvable as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We can now conclude by showing that singletons {d} are solvable for each d | n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This follows directly from the fact that {d ≥ 1 : d | n} is solvable and that if S is solvable then {s ∈ S : υp(s) = h} is solvable for all prime divisors p | n and all h ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any n ∈ OFS, the group Z/nZ is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let A, A′ ∈ M(Z/nZ) be two multisets such that FS(A) = FS(A′);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' we shall prove that A ∼0 A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By definition of the map FS, it holds the polynomial identity in Z[t]/(tn − 1) n−1 � j=0 µFS(A)(j)tj ≡ � s∈FS(A) ts ≡ � a∈A (1 + ta) ≡ n−1 � j=0 (1 + tj)µA(j) (mod tn − 1), Thus the condition FS(A) = FS(A′) is equivalent to n−1 � j=0 (1 + tj)µA(j) ≡ n−1 � j=0 (1 + tj)µA′(j) (mod tn − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 15 For any divisor d | n, ωd is a root of tn − 1 and therefore the latter identity implies n−1 � j=0 (1 + ωj d)µA(j) = n−1 � j=0 (1 + ωj d)µA′(j) which, recalling Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2, is equivalent to Fd � πn d � (µA(j) − µA′(j))0≤j 1 (in particular, proving the invertibility of the (d − 1)-planes transform seems to be considerably easier due to the larger number of symmetries).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The recent work [CHM18] defines a Radon transform which is almost equiva- lent to our discrete Radon transform on (Z/pZ)d, where p is a prime number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In that paper the Radon transform (which they call classical Radon trans- form to distinguish it from the one of Diaconis and Graham) coincides with the restriction of ours to the homomorphisms ψ ∈ Hom((Z/pZ)d, Z/pZ) such that ψ(0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0, 1) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Due to this restriction, they cannot establish a full inversion formula [CHM18, Theorem 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In the work [AI08], the authors define a discrete Radon transform on Zd which is equivalent to the Radon transform on Zd with our notation (if one allows the group to be non-finite in the definition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An inversion formula [AI08, Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1] is proven for such discrete Radon transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Joining the methods of [AI08] with ours, it might be possible to produce inversion formulas for the discrete Radon transform on groups (Z/nZ × Z)d that are neither finite nor torsion-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We do not investigate this as it goes beyond the scope of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An alternative definition of discrete Radon transform for finite abelian groups is provided in [Ilm14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The maximal Radon transform defined in this ref- erence [Ilm14, Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3] computes the sum of the function f over all translations of maximal cyclic subgroups of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is not hard to check that, for p prime, the maximal Radon transform on (Z/pZ)2 coincides with ours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In this special case, the author proves the invertibility of the Radon transform [Ilm14, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In general his definition does not coincide with ours and, in particular, the maximal Radon 18 FEDERICO GLAUDO AND ANDREA CIPRIETTI transform is not invertible in many important cases [Ilm14, Propositions 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2, 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us introduce the concept of inversion formula for our discrete Radon transform (cp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' [Hel99, Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1], [Str82]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The main goal of this section is to obtain an inversion formula (see Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, d ≥ 1 be positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We say that the Radon transform on (Z/nZ)d (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) admits an inversion formula if there exists a function λ = λn,d : Hom((Z/nZ)d, Z/nZ) → Q such that f(x) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ)Rf(ψ, ψ(x)), for all functions f : (Z/nZ)d → C and all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us begin with a simple but useful criterion for the existence of an inversion formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, d ≥ 1 be positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A function λ : Hom((Z/nZ)d, Z/nZ) → Q induces an inversion formula for the discrete Radon transform on (Z/nZ)d (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2) if and only if it satisfies, for all x ∈ (Z/nZ)d, (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5) � ψ∈Hom((Z/nZ)d, Z/nZ) ψ(x)=0 λ(ψ) = � 1 if x = 0, 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any f : (Z/nZ)d → C, any λ : Hom((Z/nZ)d, Z/nZ) → Q and any x ∈ (Z/nZ)d, it holds � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ)Rf(ψ, ψ(x)) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ) � x′∈(Z/nZ)d ψ(x′)=ψ(x) f(x′) = � x′∈(Z/nZ)d f(x′) � ψ∈Hom((Z/nZ)d, Z/nZ) ψ(x′−x)=0 λ(ψ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to this identity, it is clear that λ induces an inversion formula if and only if Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ In the next technical lemma we show that inversion formulas behave nicely with respect to products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let n, m, d ≥ 1 be positive integers such that n and m are coprime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If the discrete Radon transforms on (Z/nZ)d and on (Z/mZ)d admit inversion for- mulas, then also the Radon transform on (Z/nmZ)d admits an inversion formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To simplify the notation, let G := Z/nZ and H := Z/mZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let ι : Hom(Gd, G)×Hom(Hd, H) → Hom(Gd⊕Hd, G⊕H) be the map such that ι(ψ1, ψ2)(x1, x2) = (ψ1(x1), ψ2(x2)) for all ψ1 ∈ Hom(Gd, G), ψ2 ∈ Hom(Hd, H), x1 ∈ Gd, x2 ∈ Hd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since n, m are coprime the map ι is bijective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since we assume that the Radon transforms on Gd and Hd admit inversion for- mulas, thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1, we deduce the existence of λ1 : Hom(Gd, G) → Q and λ2 : Hom(Hd, H) → Q satisfying Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 19 Let λ : Hom(Gd ⊕ Hd, G ⊕ H) → Q be the function such that λ(ι(ψ1, ψ2)) = λ1(ψ1)λ2(ψ2) for all ψ1 ∈ Hom(Gd, G), ψ2 ∈ Hom(Hd, H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any x1 ∈ Gd and x2 ∈ Hd, we have � ψ∈Hom(Gd⊕Hd, G⊕H) ψ(x1,x2)=(0G,0H) λ(ψ) = � ψ1∈Hom(Gd, G), ψ2∈Hom(Hd, H) ψ1(x1)=0G, ψ2(x2)=0H λ1(ψ1)λ2(ψ2) = � � ψ1∈Hom(Gd, G) ψ1(x1)=0G λ1(ψ1) �� � ψ2∈Hom(Hd, H) ψ1(x2)=0H λ2(ψ2) � = � 1 if x1 = 0G and x2 = 0H, 0 otherwise, which is equivalent to the fact that the discrete Radon tranform on Gd ⊕ Hd ad- mits an inversion formula thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' This is equivalent to the desired statement since G ⊕ H ∼= Z/nmZ as a consequence of the coprimality of m, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Our next goal is to show that the Radon transform on (Z/pkZ)d (with p prime) admits an inversion formula (see Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us begin with a sequence of technical lemmas (Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6) concerning the structure of (Z/pkZ)d, its automorphisms and its canonical scalar product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The first two statements, Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4, are special cases of known results (see [HR07;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' SS99]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For completeness, and because the proofs are much simpler compared to the proofs of the statements we cite, we provide a self-contained proof for both facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given a d × d matrix M ∈ (Z/pkZ)d×d, let mulM : (Z/pkZ)d → (Z/pkZ)d be the group homomorphism given by the multiplication with the matrix M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', for all x = (x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xd) ∈ (Z/pkZ)d, mulM(x) := � d � j=1 Mijxj � i=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=',d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The group of automorphisms of (Z/pkZ)d is given by Aut((Z/pkZ)d) = {mulM : M ∈ (Z/pkZ)d×d so that p does not divide det(M)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' A homomorphism φ : (Z/pkZ)d → (Z/pkZ)d is uniquely determined by the images of the d generators of (Z/pkZ)d, that is by the values φ(1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0), φ(0, 1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , φ(0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let M ∈ (Z/pkZ)d×d be the matrix such that the j-th column is given by the image through φ of the j-th generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It holds φ = mulM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It remains to prove that mulM is an automorphism (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=', its inverse is a homo- morphism) if and only if det(M) is not divisible by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that mulM ◦ mulN = mulMN, therefore mulM is an automorphism if and only if M is invertible modulo pk, or equivalently det(M) is not divisible by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ 20 FEDERICO GLAUDO AND ANDREA CIPRIETTI Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any 0 ≤ h ≤ k, let Eh ⊆ (Z/pkZ)d be the subset Eh := {x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xd) ∈ (Z/pkZ)d : ph divides xi for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , d}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Moreover, let E∗ k := Ek = {(0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0)} ∈ (Z/pkZ)d and, for 0 ≤ h < k, E∗ h := Eh \\ Eh+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The orbits of the action of the automorphism group of (Z/pkZ)d are exactly E∗ 0, E∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , E∗ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The subset Eh coincides with the elements of (Z/pkZ)d with order at most pk−h, hence E∗ h coincides with the elements of (Z/pkZ)d with order equal to pk−h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In particular, the image of E∗ h through an automorphism coincides with E∗ h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To prove that E∗ h is an orbit for the automorphism group, we show that given x = (x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , xd) ∈ E∗ h there exists an automorphism φ ∈ Aut((Z/pkZ)d) such that φ(ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By definition of E∗ h, it holds υp(xi) ≥ h for all i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , d (recall that υp denotes the p-adic valuation), and without loss of generality we may assume that υp(x1) = h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Consider the matrix M ∈ (Z/pkZ)d×d with the following entries M = � � � � � � � � � x1/ph 0 0 · · 0 0 x2/ph 1 0 · · 0 0 x3/ph 0 1 · · 0 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' xd−1/ph 0 0 · · 1 0 xd/ph 0 0 · · 0 1 � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since det(M) = x1/ph, which is not divisible by p, the classification of automor- phisms proven in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3 guarantees that φ = mulM is an automorphism which satisfies φ(ph, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) = x, as desired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Denote with · : (Z/pkZ)d × (Z/pkZ)d → Z/pkZ the scalar product x · y := x1y1 + x2y2 + · · · + xdyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any automorphism φ ∈ Aut((Z/pkZ)d), there exists an automorphism φt ∈ Aut((Z/pkZ)d) such that φ(x) · y = x · φt(y) for all x, y ∈ (Z/pkZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3, we know that there exists M ∈ (Z/pkZ)d×d such that φ = mulM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It can be checked that φt := mulM t, where M t is the transpose of M, satisfies the requirements of the statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Recall the definitions of Eh and E∗ h given in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given 0 ≤ h, h′ ≤ k, for any x ∈ E∗ h it holds |{y ∈ Eh′ : x · y = 0}| = p(d−1)(k−h′)+min{h, k−h′} and, in particular, this quantity does not depend on the specific choice of x ∈ E∗ h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thanks to Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4, there exists an automorphism φ ∈ Aut((Z/pkZ)d) such that φ((ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0)) = x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice (recall Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5) that x · y = 0 if and ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 21 only if (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · φt(y) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Moreover, as a consequence of Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='4, we have that φt(Eh′) = Eh′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thus, we deduce φt� {y ∈ Eh′ : x · y = 0} � = {y ∈ Eh′ : (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · y = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In particular, we have shown that the cardinality of such set does not depend on the specific choice of x ∈ E∗ h and we may assume x = (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The condition y ∈ Eh′ is equivalent to the fact that y may be expressed as y = ph′(z1, z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' zd) with z1, z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , zd ∈ Z/pk−h′Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The condition (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0)·y = 0 is equivalent to υp(z1) ≥ max(0, k−(h+h′)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To conclude, we distinguish two cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If k ≤ h+h′, then the constraint υp(z1) ≥ max(0, k −(h+h′)) is empty, and thus any choice of z1, z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , zd ∈ Z/pk−h′Z yields an element y = ph′z of {y ∈ Eh′ : (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · y = 0}, thus such set has cardinality pd(k−h′) = p(d−1)(k−h′)+min{h,k−h′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If k ≥ h + h′, then z1 must be divisible by pk−(h+h′), while the other zi can be arbitrary values in Z/pk−h′Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, the cardinality of the set {y ∈ Eh′ : (ph, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) · y = 0} is p(d−1)(k−h′)+k−h′−(k−(h+h′)) = p(d−1)(k−h′)+min{h,k−h′}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ The only missing ingredient necessary to prove that the discrete Radon transform on (Z/pkZ)d admits an inversion formula is the invertibility of a certain matrix, which is promptly established in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The (k + 1) × (k + 1) matrix U (k) ∈ Q(k+1)×(k+1) with entries, for 0 ≤ i, j ≤ k, given by U (k) ij := p(d−1)(k−j)+min{i, k−j} is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It is easier to work with ˜U (k) ij := U (k) i(k−j) (which is invertible if and only if U (k) is invertible).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Indeed, defining q := pd−1, one has ˜U (k) ij = pmin{i,j}qj and therefore ˜U (k) = � � � � � � � � � 1 q q2 · · qk−1 qk 1 pq pq2 · · pqk−1 pqk 1 pq p2q2 · · p2qk−1 p2qk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 1 pq p2q2 · · pk−1qk−1 pk−1qk 1 pq p2q2 · · pk−1qk−1 pkqk � � � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We prove the statement by induction on k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have ˜U (0) = �1� , which is in- vertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For the inductive step, subtracting the second-to-last row of ˜U (k) from the last, all the entries of the last row become zero, except for the last one, which turns into qk(pk − pk−1) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Note further that the top-left k × k submatrix of ˜U (k) is ˜U (k−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, det ˜U (k) = qk(pk − pk−1) det ˜U (k−1), which concludes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Fix a prime p and two exponents k, d ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The discrete Radon transform on (Z/pkZ)d admits an inversion formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' 22 FEDERICO GLAUDO AND ANDREA CIPRIETTI Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that (Z/pkZ)d ∼= Hom((Z/pkZ)d, Z/pkZ) and the isomorphism is given by the map that takes y ∈ (Z/pkZ)d and produces the homomorphism (Z/pkZ)d ∋ x → x · y (where the scalar product is defined in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, applying Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1, we have that the validity of an inversion formula for the discrete Radon transform on (Z/pkZ)d is equivalent to the existence of a function λ : (Z/pkZ)d → Q such that, for all x ∈ (Z/pkZ)d, � y∈(Z/pkZ)d x·y=0 λ(y) = � 1 if x = (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0), 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We are going to construct a function λ with this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let U (k) ∈ Q(k+1)×(k+1) be the matrix considered in Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let V (k) ∈ Q(k+1)×(k+1) be the matrix given by V (k) ij = � U (k) i,j if j = k, U (k) i,j − U (k) i,j+1 if j < k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since V (k) can be obtained by U (k) through Gauss moves, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7 implies that V (k) is invertible as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that, by definition of V (k), for any 0 ≤ i, j ≤ k, Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6 implies that V (k) ij = |{y ∈ E∗ j : x · y = 0}| for any x ∈ E∗ i (recall that E∗ j = Ej \\ Ej+1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let Λ ∈ Qk+1 be the solution of V (k)Λ = (1, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us define λ : (Z/pkZ)d → Q as the function such that λ(y) := Λj when y ∈ E∗ j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We show that this function satisfies the sought identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given x ∈ E∗ i , we have � y∈(Z/pkZ)d x·y=0 λ(y) = k � j=0 |{y ∈ E∗ j : x �� y = 0}|Λj = k � j=0 V (k) ij Λj = (V (k)Λ)i, which is the desired formula since the right-hand side is 1 if i = 0 (which is equivalent to x = (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' , 0) ∈ (Z/pkZ)d) and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ We are ready to show the validity of an inversion formula for all instances of our discrete Radon transform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By the classification of finite abelian groups (see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2), the statement follows from Lemmas 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Let us apply the inversion formula obtained in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 to establish the FS- regularity of the group (Z/nZ)d when n ∈ OFS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The idea is to project through an homomorphism onto Z/nZ, use the FS-regularity of Z/nZ proven in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6, and then recover the FS-regularity of (Z/nZ)d thanks to the invertibility of the Radon transform on (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any n ∈ OFS and any d ≥ 1, the group (Z/nZ)d is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For a multiset B ∈ M((Z/nZ)d), by definition of the Radon transform on ((Z/nZ)d (see Definition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1), one has RµB(ψ, c) = µψ(B)(c) (recall that µB denotes the multiplicity of elements in the multiset B, see Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1) for any ON THE DETERMINATION OF SETS BY THEIR SUBSET SUMS 23 ψ ∈ Hom((Z/nZ)d, Z/nZ) and any c ∈ Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, the inversion formula of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2 implies (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6) µB(x) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ)µψ(B)(ψ(x)), for all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Notice that this formula allows us to reconstruct B given all its projections ψ(B) onto Z/nZ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Take two multisets A, A′ ∈ M((Z/nZ)d) such that FS(A) = FS(A′);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' our goal is to prove that A ∼0 A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For any ψ ∈ Hom((Z/nZ)d, Z/nZ), it holds FS(ψ(A)) = FS(ψ(A′)) and there- fore, since we have shown that Z/nZ is FS-regular in Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6, we have ψ(A) ∼0 ψ(A′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Thus (we use only ψ(A) ∼ ψ(A′)), we deduce that for any ψ ∈ Hom((Z/nZ)d, Z/nZ), (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7) µψ(A)(x) + µψ(A)(−x) = µψ(A′)(x) + µψ(A′)(−x) for all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Joining Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='6) and (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='7), we obtain µA(x) + µA(−x) = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ) � µψ(A)(ψ(x)) + µψ(A)(−ψ(x)) � = � ψ∈Hom((Z/nZ)d, Z/nZ) λ(ψ) � µψ(A′)(ψ(x)) + µψ(A′)(−ψ(x)) � = µA′(x) + µA′(−x) for all x ∈ (Z/nZ)d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The latter identity is equivalent to A ∼ A′, which implies A ∼0 A′ thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1-(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' FS-regularity of products with Z In this section we show that multiplying by Z does not break the FS-regularity of a group (see Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' In order to do it, we will need two technical lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' The second one, Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2, gives a condition equivalent to FS-regularity which comes handy in the proof of the main result of this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let G be an abelian group without elements of order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given three multisets A, A′, B ∈ M(G), if A + FS(B) = A′ + FS(B), then A = A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us first prove the result when B = {b} is a singleton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We prove the result by induction on the cardinality of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If |A| = 0, then ∅ = A + FS(B) = A′ + FS(B) and thus A′ = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' To handle the case |A| > 0, we begin by showing that A and A′ have a common element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We argue by contradiction, hence we assume that A and A′ are disjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Take any a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have a + b ∈ A + FS(B) = A′ + {0, b}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since a ̸∈ A′, it must hold a + b ∈ A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' By repeating this argument (swapping the role of A and A′ and replacing a with a + b) we obtain that a + 2b ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Repeating such argument k times, we obtain that a + kb ∈ A if k is even, and a + kb ∈ A′ if k is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Since A and A′ are finite, b must have finite order, otherwise the elements (a+kb)k∈N would be all distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let ord(b) be the order of b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' by assumption ord(b) is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have 24 FEDERICO GLAUDO AND ANDREA CIPRIETTI the contradiction A ∋ a = a + ord(b)b ∈ A′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' therefore we have proven that A and A′ have a common element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Now pick ¯a ∈ A ∩ A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' It holds (A \\ {¯a}) + FS(B) = (A + FS(B)) \\ {¯a, ¯a + b} = (A′ + FS(B)) \\ {¯a, ¯a + b} = (A′ \\ {¯a}) + FS(B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore, by the induction hypothesis, A \\ {¯a} = A′ \\ {¯a}, which is equivalent to A = A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us now treat general multisets B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We proceed by induction on the cardinality of B;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' the case |B| = 0 is trivial and the case |B| = 1 is already established, so we may assume |B| > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Pick an element ¯b ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We have A + FS(B) = (A + FS(B \\ {¯b})) + FS({¯b}), and likewise for A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Applying the induction hypothesis for the three multiset A + FS(B\\{¯b}), A′+FS(B\\{¯b}), {¯b}, yields the relation A+FS(B\\{¯b}) = A′+FS(B\\{¯b}), and one more application yields the sought A = A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' An abelian group G is FS-regular if and only if, for all A, A′ ∈ M(G) such that FS(A) = FS(A′) + g for some g ∈ G, it holds A ∼ A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Assume that G is FS-regular and take A, A′ ∈ M(G) such that FS(A) = FS(A′) + g for some g ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Applying Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1-(4), we produce a multiset A′′ ∈ M(G) such that A′′ ∼ A′ and FS(A) = FS(A′′);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' then we deduce A ∼0 A′′ because G is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' So, we get A ∼0 A′′ ∼ A′ which implies A ∼ A′ by transitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Let us now show the converse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Given A, A′ ∈ M(G) such that FS(A) = FS(A′), the condition described in the statement implies A ∼ A′ which implies A ∼0 A′ thanks to Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='1-(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Therefore we have proven the FS-regularity of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' □ Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' If G is a FS-regular abelian group, then also G⊕Z is FS-regular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' We begin by setting up some notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4NE3T4oBgHgl3EQfogr8/content/2301.04635v1.pdf'}
+page_content=' For B ∈ M(G⊕Z) and z ∈ Z, define B