Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,14 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
---
|
4 |
+
|
5 |
+
<center>
|
6 |
+
<img src="demo/logo.png">
|
7 |
+
</center>
|
8 |
+
|
9 |
+
|
10 |
+
# SEN2NAIP
|
11 |
+
|
12 |
+
The increasing demand for high spatial resolution in remote sensing imagery has led to the necessity of super-resolution (SR) algorithms that convert low-resolution (LR) images into high-resolution (HR) ones. To address this need, we introduce SEN2NAIP, a large remote sensing dataset designed to support conventional and reference-based SR model training. SEN2NAIP is structured into two components to provide a broad spectrum of research and application needs. The first component comprises a cross-sensor dataset of 2,851 pairs of LR images from Sentinel-2 L2A and HR images from the National Agriculture Imagery Program (NAIP). Leveraging this dataset, we developed a degradation model capable of converting NAIP images to match the characteristics of Sentinel-2 imagery ($S2_{like}$). Subsequently, this degradation model was utilized to create the second component, a synthetic dataset comprising 17,657 NAIP and $S2_{like}$ image pairs. With the SEN2NAIP dataset, we aim to provide a valuable resource that facilitates the exploration of new techniques for enhancing the spatial resolution of Sentinel-2 satellite imagery.
|
13 |
+
|
14 |
+
|