File size: 4,190 Bytes
b6249dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# CNN - Tifinagh-MNIST
## Libraries
"""
import numpy as np
import os
import cv2
from matplotlib import pyplot as plt
from tensorflow import keras
from keras.models import *
from keras.layers import *
from keras.utils import *
from tensorflow.keras.utils import to_categorical
from keras.utils.vis_utils import plot_model
"""## Data loading and adaptation """
def upload_data(path_name, number_of_class, number_of_images):
X_Data = []
Y_Data = []
for i in range(number_of_class):
images = os.listdir(path_name + str(i))
for j in range(number_of_images):
img = cv2.imread(path_name + str(i)+ '/' + images[j], 0)
X_Data.append(img)
Y_Data.append(i)
print("> the " + str(i) + "-th file is successfully uploaded.", end='\r')
return np.array(X_Data), np.array(Y_Data)
n_class = 33
n_train = 2000
n_test = 500
#here we upload our data (Tifinagh data)
x_train, y_train = upload_data('drive/MyDrive/DATA2/train_data/', n_class, n_train)
x_test, y_test = upload_data('drive/MyDrive/DATA2/test_data/', n_class, n_test)
print("The x_train's shape is :", x_train.shape)
print("The x_test's shape is :", x_test.shape)
print("The y_train's shape is :", y_train.shape)
print("The y_test's shape is :", y_test.shape)
def plot_data(num=3):
fig, axes = plt.subplots(1, num, figsize=(12, 8))
for i in range(num):
index = np.random.randint(len(x_test))
axes[i].imshow(np.reshape(x_test[index], (28, 28)))
axes[i].set_title('image label: %d' % y_test[index])
axes[i].axis('off')
plt.show()
plot_data(num=5)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
y_train = to_categorical(y_train, n_class)
y_test = to_categorical(y_test, n_class)
"""## Architecture of the model"""
def define_model(input_size = (28, 28, 1)):
inputs = Input(input_size)
conv1 = Conv2D(128, 3, activation='relu', padding='same')(inputs)
conv1 = Conv2D(128, 3, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv3 = Conv2D(64, 3, activation='relu', padding='same')(pool1)
conv3 = Conv2D(64, 3, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(32, 3, activation='relu', padding='same')(pool3)
fltt = Flatten()(conv4)
dan = Dense(33, activation='softmax')(fltt)
model = Model(inputs=inputs, outputs=dan)
model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
return model
model = define_model((28, 28, 1))
model.summary()
his = model.fit(x_train, y_train, epochs=10, batch_size=128, validation_data=(x_test, y_test))
"""## Model prediction on test data after training"""
def plot_predictions(model, num=3):
fig, axes = plt.subplots(1, num, figsize=(12, 8))
for i in range(num):
index = np.random.randint(len(y_test))
pred = np.argmax(model.predict(np.reshape(x_test[index], (1, 28, 28))))
axes[i].imshow(np.reshape(x_test[index], (28, 28)))
axes[i].set_title('Predicted label: '+ str(pred) + '\n/ true label :'+ str([e for e, x in enumerate(y_test[index]) if x == 1][0]))
axes[i].axis('off')
plt.show()
plot_predictions(model, num=5)
score = model.evaluate(x_test, y_test, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
import matplotlib.pyplot as plt
import numpy as np
with plt.xkcd():
plt.plot(his.history['accuracy'], color='c')
plt.plot(his.history['val_accuracy'], color='red')
plt.title('Tifinagh-MNIST model accuracy')
plt.legend(['acc', 'val_acc'])
plt.savefig('acc_Tifinagh_MNIST_cnn.png')
plt.show()
with plt.xkcd():
plt.plot(his.history['loss'], color='c')
plt.plot(his.history['val_loss'], color='red')
plt.title('Tifinagh-MNIST model loss')
plt.legend(['loss', 'val_loss'])
plt.savefig('loss_Tifinagh_MNIST_cnn.png')
plt.show() |