|
""" |
|
This script monitors docker stats and generates plots of memory and/or cpu usage. |
|
|
|
Once executed, the script will continue monitoring stats until interrupted. |
|
Once interrupted (ctrl+c), the stats will be saved as a .csv file and plots |
|
will be generated if the `-p` flag was provided. Plots can also be generated |
|
later from the .csv file by providing the `-P` flag. |
|
|
|
Note that this script currently cannot handle situations where containers are |
|
started or stopped while monitoring is ongoing. |
|
""" |
|
|
|
import argparse |
|
import os |
|
|
|
import docker |
|
import matplotlib.dates as mdates |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
|
|
|
|
data = [] |
|
|
|
|
|
def parse_arguments(): |
|
""" |
|
Parse command line arguments. |
|
""" |
|
parser = argparse.ArgumentParser(description='Docker Stats Monitoring Script') |
|
|
|
parser.add_argument('container', metavar='CONTAINER', type=str, nargs='*', help='containers to monitor') |
|
|
|
parser.add_argument('-o', '--output-directory', type=str, nargs=1, default='stats', |
|
metavar='DIR', help='use DIR as output directory') |
|
|
|
parser.add_argument('-p', '--plot', action='store_true', help='generate plots') |
|
|
|
parser.add_argument('-P', '--post-process', action='store_true', help='generate plots from existing data') |
|
|
|
parser.add_argument('-f', '--filename', type=str, nargs=1, default='stats.csv', |
|
metavar='FILE', help='data file for post-processing') |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def calculate_cpu_percent(d): |
|
""" |
|
Given a dictionary of stats from docker, compute the cpu usage as a percent. |
|
|
|
Code sources: |
|
- https://github.com/docker/cli/blob/2bfac7fcdafeafbd2f450abb6d1bb3106e4f3ccb/cli/command/container/stats_helpers.go#L168 |
|
- https://github.com/TomasTomecek/sen/blob/67794e176e70fa77d01e2acae381b92e501c0e17/sen/util.py#L176 |
|
""" |
|
cpu_count = len(d["cpu_stats"]["cpu_usage"]["percpu_usage"]) |
|
cpu_percent = 0.0 |
|
cpu_delta = float(d["cpu_stats"]["cpu_usage"]["total_usage"]) - float(d["precpu_stats"]["cpu_usage"]["total_usage"]) |
|
system_delta = float(d["cpu_stats"]["system_cpu_usage"]) - float(d["precpu_stats"]["system_cpu_usage"]) |
|
if system_delta > 0.0: |
|
cpu_percent = cpu_delta / system_delta * 100.0 * cpu_count |
|
return cpu_percent |
|
|
|
|
|
def get_cpu(stats): |
|
""" |
|
For a list of stats dictionaries, retrieve and calculate cpu usage. |
|
|
|
Returns a list of cpu usages in %. |
|
""" |
|
cpu = [] |
|
for item in stats: |
|
try: |
|
cpu_percent = calculate_cpu_percent(item) |
|
except KeyError: |
|
continue |
|
else: |
|
cpu.append(cpu_percent) |
|
|
|
return cpu |
|
|
|
|
|
def get_mem(stats): |
|
""" |
|
For a list of stats dictionaries, retrieve memory usage. |
|
|
|
Returns a list of memory usages in MiB. |
|
""" |
|
mem = [] |
|
for item in stats: |
|
try: |
|
mem_usage = item['memory_stats']['usage'] / 1024 / 1024 |
|
except KeyError: |
|
continue |
|
else: |
|
mem.append(mem_usage) |
|
|
|
return mem |
|
|
|
|
|
def get_time(stats): |
|
""" |
|
For a list of stats dictionaries, retrieve the time from the FIRST entry. |
|
|
|
Returns a single matplotlib timestamp as a float. |
|
""" |
|
t = mdates.datestr2num(stats[0]['read']) |
|
return t |
|
|
|
|
|
def monitor(client, names): |
|
""" |
|
Monitor container stats using Docker SDK. Will continue until interrupted. |
|
""" |
|
|
|
global data |
|
|
|
containers = [client.containers.get(name) for name in names] |
|
print('{0:<30}{1:<40}{2:<20}{3:<20}'.format('Time', 'Name', 'CPU', 'Memory(MiB)')) |
|
print('{0:<30}{1:<40}{2:<20}{3:<20}'.format('----', '----', '---', '-----------')) |
|
for items in zip(*[c.stats(stream=True, decode=True) for c in containers]): |
|
cpu = get_cpu(items) |
|
mem = get_mem(items) |
|
t = get_time(items) |
|
|
|
if cpu: |
|
|
|
data.append([t] + cpu + mem) |
|
|
|
for i, name in enumerate(names): |
|
t_str = mdates.num2date(t).isoformat(' ', timespec='seconds') |
|
print('{0:<30}{1:<40}{2:<20.2f}{3:<20.2f}'.format(t_str, name, cpu[i], mem[i])) |
|
|
|
|
|
def main(): |
|
""" |
|
Monitor Docker container stats and generate plots if requested. |
|
""" |
|
|
|
args = parse_arguments() |
|
|
|
wd = os.path.join(os.getcwd(), args.output_directory) |
|
|
|
if args.post_process: |
|
data_df = pd.read_csv(os.path.join(wd, args.filename)) |
|
plot(data_df, wd, containers=args.container) |
|
return |
|
|
|
if not os.path.isdir(wd): |
|
os.mkdir(wd) |
|
|
|
client = docker.from_env() |
|
|
|
if args.container: |
|
names = args.container |
|
else: |
|
names = [c.name for c in client.containers.list(filters={'status': 'running'})] |
|
|
|
try: |
|
monitor(client, names) |
|
except KeyboardInterrupt: |
|
print('') |
|
print('Stopping monitoring...') |
|
|
|
print('Saving data...') |
|
|
|
headers = ['Time'] + [name + '_cpu' for name in names] + [name + '_mem' for name in names] |
|
|
|
global data |
|
data_df = pd.DataFrame(data, columns=headers) |
|
|
|
data_df.to_csv(os.path.join(wd, 'stats.csv'), index=False) |
|
|
|
if args.plot: |
|
plot(data_df, wd) |
|
|
|
|
|
def plot(data_df, wd, containers=None): |
|
""" |
|
Generate all plots |
|
""" |
|
print('Generating plots...') |
|
plot_mem(data_df, wd, containers=containers) |
|
plot_cpu(data_df, wd, containers=containers) |
|
|
|
|
|
def plot_mem(data_df, wd, containers=None): |
|
""" |
|
Generate plot of memory usage and save it to the specified directory. |
|
""" |
|
fig, ax = plt.subplots() |
|
x = data_df['Time'] |
|
if containers: |
|
columns = [c + '_mem' for c in containers] |
|
else: |
|
columns = [c for c in data_df.columns if c.endswith('mem')] |
|
y = data_df[columns] |
|
plt.plot(x, y) |
|
|
|
locator = mdates.AutoDateLocator() |
|
formatter = mdates.DateFormatter('%H:%M:%S') |
|
ax.xaxis.set_major_locator(locator) |
|
ax.xaxis.set_major_formatter(formatter) |
|
|
|
plt.legend([c[:-4] for c in columns], bbox_to_anchor=(1.02, 1), loc=2, borderaxespad=0.) |
|
plt.xlabel('Time') |
|
plt.ylabel('Memory (MiB)') |
|
plt.savefig(os.path.join(wd, 'mem.png'), bbox_inches="tight", dpi=150) |
|
|
|
|
|
def plot_cpu(data_df, wd, containers=None): |
|
""" |
|
Generate plot of cpu usage and save it to the specified directory. |
|
""" |
|
fig, ax = plt.subplots() |
|
x = data_df['Time'] |
|
if containers: |
|
columns = [c + '_cpu' for c in containers] |
|
else: |
|
columns = [c for c in data_df.columns if c.endswith('cpu')] |
|
y = data_df[columns] |
|
plt.plot(x, y) |
|
|
|
locator = mdates.AutoDateLocator() |
|
formatter = mdates.DateFormatter('%H:%M:%S') |
|
ax.xaxis.set_major_locator(locator) |
|
ax.xaxis.set_major_formatter(formatter) |
|
|
|
plt.legend([c[:-4] for c in columns], bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) |
|
plt.xlabel('Time') |
|
plt.ylabel('CPU (%)') |
|
plt.savefig(os.path.join(wd, 'cpu.png'), bbox_inches="tight", dpi=150) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|