// Copyright 2003-2009 Bill Manaris, Dana Hughes, J.R. Armstrong, Thomas Zalonis, Luca Pellicoro, // Chris Wagner, Chuck McCormick // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // package nevmuse.utilities; import java.util.Arrays; import java.util.Hashtable; import java.util.Enumeration; /** * This class contains static methods that calculate the slope and R^2 of a trendline * of a Zipf distribution (byRank or bySize). *
*
The byRank distribution plots the values (y-axis) against the ranks of the values from largest to smallest * (x-axis) in log-log scale. The ranks are generated automatically. *
*
The bySize distribution plots the values (y-axis) against the supplied keys (x-axis) in log-log scale. *
*
* NOTE: The provided methods are static, so call them as Zipf.byRank(values) or Zipf.bySize(keys, values). *
*
* @author Luca Pellicoro, Chris Wagner, Bill Manaris (based on VB code by Chuck McCormick and Bill Manaris ) * * @version 1.6 (October 19, 2009) Dana Hughes * - Replaced IllegalArgumentException when no values are passed with slope = 0 and r2 = 0. * This allows for batch processes to continue without exiting due to this exception. * Also, numeric values may be more meaningful. * @version 1.5 (November 3, 2009) Thomas Zalonis * - Translated the latest zipf.py update (see zipf.py update message below) to Zipf.java * zipf.py version 1.5 (December 24, 2008) J.R. Armstrong and Bill Manaris * - Now we are differentiating between monotonous and random phenomena (vertical vs. horizontal trendlines). * In the first case, we return slope = 0 and r2 = 0. * In the second case, we return slope = 0 and r2 = 1. * Also, some variable names have been updated. * * @version 1.2 (Jan 2007) Luca Pellicoro * - Static Methods only (no more class instantiation) * - Raising exceptions intead of Assert statements * - Zero values and zero keys are considered erroneous input (raise IllegalArgumentException) * @version 1.1 (July 30, 2005) * @version 1.0 (May 10, 2003) */ public class Zipf { /* public static void main(String[] args) { // numbers can be entered from the command line as "java Zipf 1 2 2 3 3 3 3" or // any other sequence of numbers by uncommenting the code below. //double[] phen = new double[args.length]; //for(int i = 0;i < args.length;i++) //{ // phen[i] = (int)Double.parseDouble(args[i]); //} //double[] phen = {1, 1, 1}; // check monotonous //double[] phen = {2, 2, 2, 3, 3, 3}; // check uniformly distributed (white noise) //double[] phen = {1, 1, 2}; // check truly zipfian (pink noise) //double[] phen = {1, 1, 1, 1, 2}; // check brown noise double[] phen = {1, 2, 2, 3, 3, 3, 3}; // check general case System.out.print("Given the sequence: "); for(int i = 0;i < phen.length;i++) { System.out.print(phen[i] + ", "); } System.out.println(); // calculate frequency of occurrence of each symbol Hashtable histogram = new Hashtable(); for(int i = 0;i < phen.length;i++) { if(histogram.containsKey(phen[i])) { int currentValue = ((Integer)histogram.get(phen[i])).intValue(); histogram.put(phen[i], new Integer(currentValue + 1)); } else { histogram.put(phen[i], new Integer(1)); } } // next, extract the counts and calculate their rank-frequency (Zipfian) distribution double[] counts = new double[histogram.size()]; int i = 0; for (Enumeration e = histogram.keys(); e.hasMoreElements();) { counts[i] = (double)((Integer)histogram.get(e.nextElement())).intValue(); i++; } double[] result = byRank(counts); double slope = result[0]; double r2 = result[1]; System.out.println("The byRank slope is " + slope + " and the R2 is " + r2); // now, extract the sizes calculate their side-frequency (Zipfian) distribution double[] sizes = new double[histogram.size()]; i = 0; for (Enumeration e = histogram.keys(); e.hasMoreElements();) { sizes[i] = ((Double)e.nextElement()).doubleValue(); i++; } result = bySize(sizes, counts); slope = result[0]; r2 = result[1]; System.out.println("The bySize slope is " + slope + " and the R2 is " + r2); } */ /** * * Calculate the slope and R^2 of the rank-frequency distribution of the provided frequencies. * Ranks will be automatically generated. *
*
* '''NOTE:''' Caller does not need to sort the frequencies. *
*
* @param frequencies The values whose rank-frequency distribution to calculate (y-axis). * * @return A double array containing slope (at index 0) and R^2 (at index 1). */ public static double[] byRank(double[] frequencies) { int numberOfValues = frequencies.length; // Step 1 and 2: Sort the vals and create keys // Copy vals so sort doesn't alter it. double[] newValues = new double[numberOfValues]; double[] keys = new double[numberOfValues]; for(int i = 0; i < numberOfValues; i++) { keys[i] = numberOfValues - i; newValues[i] = frequencies[i]; } Arrays.sort(newValues); checkKeysAndValues(keys, newValues); // Step 3: Get Zipf Slope and R2 of keys/values. return calculateSlopeR2(keys, newValues); } /** * Calculate the slope and R^2 of the size-frequency distribution of the provided sizes and frequencies. *
*
* '''NOTE:''' Caller does not need to sort the sizes or frequencies provided. *
*
* @param sizes The sizes (x-axis). * @param frequencies The frequencies (y-axis). * * @return An double array containing slope (at index 0) and R^2 (at index 1). */ public static double[] bySize(double[] sizes, double[] frequencies) { checkKeysAndValues(sizes, frequencies); // NOTE: There is no need to sort the parallel arrays of keys and vals, since // getSlopeR2() does not care if the keys are sorted in any particular order; // it cares only that the association between keys[i] and vals[i] is correct. return calculateSlopeR2(sizes, frequencies); } /******************************* * SUPPORTING METHODS *******************************/ /** * Checks if provided data is relatively error free. In particular, it will raise exceptions if * - a data array is empty * - keys and values do not contain the same number of elements * - a data array contains negative or zero elements */ private static void checkKeysAndValues(double[] keys, double[] values) { // NOTE: The first exception (keys or values contain no elements) has been replaced with // setting the slope and r2 values to 0. This allows for batch operations to be // performed without generating an Exception, or requiring the use of NaN's. // if (keys.length == 0 || values.length == 0) // throw new IllegalArgumentException ("Data (values and keys) must contain at least one element."); if (keys.length != values.length) throw new IllegalArgumentException("Keys and values must have the same length (keys length was " + keys.length + " and values length was " + values.length + ")."); for (int i = 0; i < values.length; i++) if (keys[i] <= 0.0 || values[i] <= 0.0) throw new IllegalArgumentException ("Data must be positive: keys[" + i + "] was " + keys[i] + " and values[" + i + "] was " + values[i] ); } /** * Calculates the linear regression (slope and R^2 (fit)) of a set of keys and values. * If slope and/or R^2 cannot be calculated, zero is returned. * * @param keys The keys for the set * @param vals The values for the set * * @return An array of doubles (slope is stored in index 0 and R^2 (fit) in index 1). */ private static double[] calculateSlopeR2(double[] keys, double[] vals) { // Log10(keys) is mapped to the X axis. // Log10(vals) is mapped to the Y axis. double sumX = 0; // holds the sum of X values. double sumY = 0; // holds the sum of Y values. double sumXY = 0; // holds the sum of X*Y values. double sumX2 = 0; // holds the sum of X*X values. double sumY2 = 0; // holds the sum of Y*Y values. double[] sr2 = new double[2]; // holds the slope and r2 to be returned (slope is stored in index 0 and R^2 in index 1) // one exterme case: // if the phenomenon is monotonous (only one type of event, e.g., ['a', 'a', 'a']), // then the slope is negative infinity (cannot draw a line with only one data point), // so indicate this with slope = 0 AND r2 = 0 if (keys.length == 1) { sr2[0] = 0.0; sr2[1] = 0.0; } // another extreme case (added 10/20/10): // if the phenomenon contains no information (i.e., no statistical data exists), // then the slope is undefined. Rather than causing an Exception, indicate this // with a slope = 0 AND r2 = 0. Classes utilizing Zipf can always override this // prior to calling and set these values to NaN, if desired. else if (keys.length == 0) { sr2[0] = 0.0; sr2[1] = 0.0; } else { // the other extreme case: // if the phenomenon is uniformly distributed (several types of events, // but all having the same number of instances, e.g., ['a', 'b', 'a', 'b', 'a', 'b']), // then the slope = 0 and r2 = 1 (a horizontal line). // check if all counts are equal int i = 0; boolean allCountsEqual = true; // assume they are all equal while(allCountsEqual && i < (keys.length - 1)) { allCountsEqual = (vals[i] == vals[i + 1]); // update hypothesis i = i + 1; } if (allCountsEqual) // is phenomenon uniformly distributed? { sr2[0] = 0.0; sr2[1] = 1.0; } else // general case, so caluclate actual slope and r2 values { // Sum up the values for the calculations. for (i = 0; i < keys.length; i++) { //System.out.print(" " + i + " "); sumX += log10(keys[i]); sumY += log10(vals[i]); sumXY += log10(keys[i]) * log10(vals[i]); sumX2 += log10(keys[i]) * log10(keys[i]); sumY2 += log10(vals[i]) * log10(vals[i]); } // calculate the slope if ((keys.length * sumX2 - sumX * sumX) == 0) // check for division by zero (below) sr2[0] = 0; else sr2[0] = ((keys.length * sumXY - sumX * sumY) / (keys.length * sumX2 - sumX * sumX)); // If you want to create the line: y = mx + b // m = slope // This calculates b. // double b = (sumY - sr2[0] * sumX) / keys.length; // calculate the R^2 if (Math.sqrt((keys.length * sumX2 - sumX * sumX) * (keys.length * sumY2 - sumY * sumY)) == 0) // check for division by zero (below) sr2[1] = 0; else sr2[1] = (keys.length * sumXY - sumX * sumY) / Math.sqrt((keys.length * sumX2 - sumX * sumX) * (keys.length * sumY2 - sumY * sumY)); sr2[1] = sr2[1] * sr2[1]; // get the square } } // return the result (slope is stored in index 0 and R^2 in index 1) return sr2; } /** * The natural log of 10 */ private static final double LN_10 = 2.3025850929940456840179914546844; /** * Calculate the Log base 10 of a number. * This is required because Math.log is not Log(10) but Ln (natural Log). * * Note: Log(b) n = Ln n / Ln b. * * @param n The original number. * * @return Log(10) n */ private static double log10(double n) { return Math.log(n)/LN_10; } }