File size: 9,788 Bytes
3ebcd19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
// Copyright 2003-2009 Bill Manaris, Dana Hughes, J.R. Armstrong, Thomas Zalonis, Luca Pellicoro,
// Chris Wagner, Chuck McCormick
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
/* zipf.c Version 1.5 24-Dec-2009
*
* This module encapsulates functions that may be used to calculate
* the slope and r2 (fit) of a trendline
* of a Zipf distribution (byRank or bySize).
*
* The byRank distribution plots the values (y-axis)
* against the ranks of the values from largest to smallest
* (x-axis) in log-log scale. The ranks are generated automatically.
*
* The bySize distribution plots the values (y-axis)
* against the supplised keys (x-axis) in log-log scale.
*
* Usage: Call bySize(int *ranks, int numRanks, double *counts, int numCounts) and.or
* byRank(double *counts, int numCounts) functions.
*
* Output: slope and R2
*
* WARNING: If an error occurs the current code will NOT raise an exception;
* it will only print an error message (for ShedSkin compatibility).
* This may cause problems, if the error messages go undetected
* (e.g., this code is run in batch mode).
*
* Authors: Chris Wagner and Bill Manaris (based on VB code by Chuck McCormick and Bill Manaris)
*
* Thomas Zalonis - translate to C.
*
* version 1.5 (December 24, 2008) J.R. Armstrong and Bill Manaris
* - Now we are differentiating between monotonous and random phenomena (vertical vs. horizontal trendlines).
* In the first case, we return slope = 0 and r2 = 0.
* In the second case, we return slope = 0 and r2 = 1.
* Also, some variable names have been updated.
*
* version 1.4 (October 1, 2008) Bill Manaris
* - Added more unit-testing code (i.e., if __name__=='__main__') for Shed Skin Python-to-C++ conversion to work.
* - Updated some variable names for usability/readability
*
* version 1.3 (March 23, 2007) Thomas Zalonis
* - Added code to the getSlopeR2() function that calculates the y-intercept for the trendline.
* - getSlopeR2() now returns 3 values, slope, r2 and the trendline y-intercept
*
* version 1.2 (Feb 03, 2007) Luca Pellicoro
* -Translation from Java to Python
* -Raise exceptions with erroneous user inputs (such as zero keys or values)
*
* version 1.1 (July 30, 2005)
*
* version 1.0 (May 10, 2003)
*
*
* Calculates slope and R^2 values of a collection of numbers.
*
* Libraries needed:
* -----------------
* stdlib for qsort
*
*/
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <string.h>
#define FALSE 0
#define TRUE 1
//*****************************************************************************
// This struct is used to return multiple values from byRank()
// ****************************************************************************
struct ZipfValues
{
float slope;
float r2;
float yint;
};
// zipf related
struct ZipfValues *getSlopeR2(int *, int, double *, int);
int checkRanksAndCounts(int *, int, double *, int);
struct ZipfValues *bySize(int *, int, double *, int);
int compare(const void *, const void *);
struct ZipfValues *byRank(double *, int);
//*****************************************************************************
// The byRank distribution plots the values (y-axis)
// against the ranks of the values from largest to smallest
// (x-axis) in log-log scale. The ranks are generated automatically.
//*****************************************************************************
struct ZipfValues *byRank(double *counts, int numCounts)
{
double *newCounts = (double *)malloc(sizeof(double) * numCounts);
int *newRanks = (int *)malloc(sizeof(int) * numCounts);
int index;
for(index=0;index<numCounts;index++)
{
newCounts[index] = counts[index];
newRanks[index] = numCounts - index;
}
qsort((void *)newCounts, numCounts, sizeof(double), compare);
checkRanksAndCounts(newRanks, numCounts, newCounts, numCounts);
return getSlopeR2(newRanks, numCounts, newCounts, numCounts);
}
//*****************************************************************************
// 'Double' comparison function needed for sorting. This function
// is passed in as a parameter to qsort() in the byRank() function.
//*****************************************************************************
int compare(const void *a, const void *b)
{
double d = *( (double *) a) - *( (double *) b );
if(d > 0.0)
{
return 1;
}
else if (d < 0.0)
{
return -1;
}
else
{
return 0;
}
}
//*****************************************************************************
// The bySize distribution plots the values (y-axis)
// against the supplised keys (x-axis) in log-log scale.
//*****************************************************************************
struct ZipfValues *bySize(int *sizes, int numSizes, double *counts, int numCounts)
{
checkRanksAndCounts(sizes, numSizes, counts, numCounts);
return getSlopeR2(sizes, numSizes, counts, numCounts);
}
//*****************************************************************************
// Supporting function for bySize() and byRank(). Checks the passed values
// for correctness.
//*****************************************************************************
int checkRanksAndCounts(int *ranks, int numRanks, double *counts, int numCounts)
{
if(numCounts == 0)
{
fprintf(stderr, "Counts should contain at least one element.\n");
exit(0);
}
if(numRanks == 0)
{
fprintf(stderr, "Ranks should contain at least one element.\n");
exit(0);
}
if(numRanks != numCounts)
{
fprintf(stderr, "Ranks (%d) and counts (%d) should have the same size.\n", numRanks, numCounts);
exit(0);
}
int i;
for(i=0;i<numRanks;i++)
{
if(ranks[i] <= 0.0)
{
fprintf(stderr, "Ranks should be strictly positive.\n");
exit(0);
}
if(counts[i] <= 0.0)
{
fprintf(stderr, "Counts and values should be strictly positive.\n");
exit(0);
}
}
return 0;
}
//*****************************************************************************
// Supporting function for byRank() and bySize(). The actual zipf values
// (slope, R2 and yint) are calculated in this function and returned
// as a struct.
//*****************************************************************************
struct ZipfValues *getSlopeR2(int *ranks, int numRanks, double *counts, int numCounts)
{
struct ZipfValues *results = (struct ZipfValues *)malloc(sizeof(struct ZipfValues));
double sumX, sumY, sumXY, sumX2, sumY2,slope, r2, yint;
int index;
sumX = sumY = sumXY = sumX2 = sumY2 = 0.0;
// one exterme case:
// if the phenomenon is monotonous (only one type of event, e.g., ['a', 'a', 'a']),
// then the slope is negative infinity (cannot draw a line with only one data point),
// so indicate this with slope = 0 AND r2 = 0
if(numRanks == 1)
{
slope = 0.0;
r2 = 0.0;
}
else
{
//the other extreme case:
//if the phenomenon is uniformly distributed (several types of events,
//but all having the same number of instances, e.g., ['a', 'b', 'a', 'b', 'a', 'b']),
//then the slope = 0 and r2 = 1 (a horizontal line).
//check if all counts are equal
int allCountsEqual = 1;
for(index=0;(index < numRanks - 1) && allCountsEqual;index++)
{
if(counts[index] != counts[index + 1])
allCountsEqual = 0;
}
if(allCountsEqual)
{
slope = 0.0;
r2 = 1.0;
}
else // general case, so calculate actual slope and r2 values
{
double tmp1,tmp2;
for(index=0;index<numRanks;index++)
{
// only calculating the follow log()s once for efficiency
tmp1 = log10(ranks[index]);
tmp2 = log10(counts[index]);
sumX += tmp1;
sumY += tmp2;
sumXY += tmp1 * tmp2;
sumX2 += pow(tmp1, 2);
sumY2 += pow(tmp2, 2);
}
// calculate slope
if((numRanks*sumX2 - sumX*sumX) == 0.0)
slope = 0.0;
else
slope = ((numRanks*sumXY - sumX*sumY) / (numRanks*sumX2 - sumX*sumX));
// calculate r2
if(sqrt((numRanks*sumX2 - sumX*sumX) * (numRanks*sumY2 - sumY*sumY)) == 0.0)
{
r2 = 0.0;
}
else
{
r2 = (numRanks*sumXY - sumX*sumY)/(sqrt(numRanks*sumX2 - sumX*sumX)*sqrt(numRanks*sumY2 - sumY*sumY));
r2 = r2 * r2;
}
}
}
// calculate y-intercept
yint = (sumY - slope * sumX) / numRanks;
// packing slope, r2 and yint into a ZipfValues struct
// so that all three can be returned at once.
results->slope = slope;
results->r2 = r2;
results->yint = yint;
return results;
}
|