Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -140,6 +140,7 @@ dataset = build_terramesh_dataset(
|
|
| 140 |
path="https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/", # Streaming or local path
|
| 141 |
modalities=["S2L2A"],
|
| 142 |
split="val",
|
|
|
|
| 143 |
batch_size=8
|
| 144 |
)
|
| 145 |
# Batch keys: ["__key__", "__url__", "image"]
|
|
@@ -148,6 +149,7 @@ dataset = build_terramesh_dataset(
|
|
| 148 |
dataset = build_terramesh_dataset(
|
| 149 |
path="https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/", # Streaming or local path
|
| 150 |
modalities=["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"],
|
|
|
|
| 151 |
split="val",
|
| 152 |
batch_size=8
|
| 153 |
)
|
|
@@ -176,7 +178,7 @@ However, it requires some wrapping to bring the data into the expected shape.
|
|
| 176 |
```python
|
| 177 |
import albumentations as A
|
| 178 |
from albumentations.pytorch import ToTensorV2
|
| 179 |
-
from terramesh import build_terramesh_dataset, Transpose, MultimodalTransforms
|
| 180 |
|
| 181 |
# Define all image modalities
|
| 182 |
modalities = ["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"]
|
|
@@ -185,6 +187,7 @@ modalities = ["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"
|
|
| 185 |
val_transform = MultimodalTransforms(
|
| 186 |
transforms=A.Compose([ # We use albumentations because of the shared transform between image modalities
|
| 187 |
Transpose([1, 2, 0]), # Convert data to channel last (expected shape from albumentations)
|
|
|
|
| 188 |
A.CenterCrop(224, 224), # Use center crop in val split
|
| 189 |
# A.RandomCrop(224, 224), # Use random crop in train split
|
| 190 |
# A.D4(), # Optionally, use random flipping and rotation for the train split
|
|
@@ -205,7 +208,14 @@ dataset = build_terramesh_dataset(
|
|
| 205 |
)
|
| 206 |
```
|
| 207 |
|
| 208 |
-
If you only use a single modality, you don't need to specify `additional_targets`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
### Returning metadata
|
| 211 |
|
|
|
|
| 140 |
path="https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/", # Streaming or local path
|
| 141 |
modalities=["S2L2A"],
|
| 142 |
split="val",
|
| 143 |
+
shuffle=False, # Set false for split="val"
|
| 144 |
batch_size=8
|
| 145 |
)
|
| 146 |
# Batch keys: ["__key__", "__url__", "image"]
|
|
|
|
| 149 |
dataset = build_terramesh_dataset(
|
| 150 |
path="https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/", # Streaming or local path
|
| 151 |
modalities=["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"],
|
| 152 |
+
shuffle=False, # Set false for split="val"
|
| 153 |
split="val",
|
| 154 |
batch_size=8
|
| 155 |
)
|
|
|
|
| 178 |
```python
|
| 179 |
import albumentations as A
|
| 180 |
from albumentations.pytorch import ToTensorV2
|
| 181 |
+
from terramesh import build_terramesh_dataset, Transpose, MultimodalTransforms, MultimodalNormalize, statistics
|
| 182 |
|
| 183 |
# Define all image modalities
|
| 184 |
modalities = ["S2L2A", "S2L1C", "S2RGB", "S1GRD", "S1RTC", "DEM", "NDVI", "LULC"]
|
|
|
|
| 187 |
val_transform = MultimodalTransforms(
|
| 188 |
transforms=A.Compose([ # We use albumentations because of the shared transform between image modalities
|
| 189 |
Transpose([1, 2, 0]), # Convert data to channel last (expected shape from albumentations)
|
| 190 |
+
MultimodalNormalize(mean=statistics["mean"], std=statistics["std"]),
|
| 191 |
A.CenterCrop(224, 224), # Use center crop in val split
|
| 192 |
# A.RandomCrop(224, 224), # Use random crop in train split
|
| 193 |
# A.D4(), # Optionally, use random flipping and rotation for the train split
|
|
|
|
| 208 |
)
|
| 209 |
```
|
| 210 |
|
| 211 |
+
If you only use a single modality, you don't need to specify `additional_targets`. You need to change the normalization to:
|
| 212 |
+
```
|
| 213 |
+
MultimodalNormalize(
|
| 214 |
+
mean={"image": statistics["mean"]["<modality>"]},
|
| 215 |
+
std={"image": statistics["std"]["<modality>"]}
|
| 216 |
+
),
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
|
| 220 |
### Returning metadata
|
| 221 |
|