Datasets:
Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- PHCR_DB25_2775.zip +3 -0
- README.md +116 -0
- data/0627_01.tif +0 -0
- data/0627_02.tif +0 -0
- data/0627_03.tif +0 -0
- data/0627_04.tif +0 -0
- data/0627_05.tif +0 -0
- data/0627_06.tif +0 -0
- data/0627_07.tif +0 -0
- data/0627_08.tif +0 -0
- data/0627_09.tif +0 -0
- data/0627_10.tif +0 -0
- data/0627_11.tif +0 -0
- data/0627_12.tif +0 -0
- data/0627_13.tif +0 -0
- data/0627_14.tif +0 -0
- data/0627_15.tif +0 -0
- data/0627_16.tif +0 -0
- data/0627_17.tif +0 -0
- data/0627_18.tif +0 -0
- data/0627_19.tif +0 -0
- data/0627_20.tif +0 -0
- data/0627_21.tif +0 -0
- data/0627_22.tif +0 -0
- data/0627_23.tif +0 -0
- data/0627_24.tif +0 -0
- data/0627_25.tif +0 -0
- data/0628_01.tif +0 -0
- data/0628_02.tif +0 -0
- data/0628_03.tif +0 -0
- data/0628_04.tif +0 -0
- data/0628_05.tif +0 -0
- data/0628_06.tif +0 -0
- data/0628_07.tif +0 -0
- data/0628_08.tif +0 -0
- data/0628_09.tif +0 -0
- data/0628_10.tif +0 -0
- data/0628_11.tif +0 -0
- data/0628_12.tif +0 -0
- data/0628_13.tif +0 -0
- data/0628_14.tif +0 -0
- data/0628_15.tif +0 -0
- data/0628_16.tif +0 -0
- data/0628_17.tif +0 -0
- data/0628_18.tif +0 -0
- data/0628_19.tif +0 -0
- data/0628_20.tif +0 -0
- data/0628_21.tif +0 -0
- data/0628_22.tif +0 -0
- data/0628_23.tif +0 -0
PHCR_DB25_2775.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ed5db73f5062bfb80c10c0d541fbbc1e39423d92ccab7120f765589724318f4
|
| 3 |
+
size 8214798
|
README.md
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- fa
|
| 4 |
+
pretty_name: Persian Historical Documents Handwritten Characters
|
| 5 |
+
size_categories:
|
| 6 |
+
- 1K<n<10K
|
| 7 |
+
tags:
|
| 8 |
+
- ocr
|
| 9 |
+
- character-recognition
|
| 10 |
+
- persian
|
| 11 |
+
- historical
|
| 12 |
+
- handwritten
|
| 13 |
+
- nastaliq
|
| 14 |
+
- character
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Persian Historical Documents Handwritten Characters
|
| 18 |
+
|
| 19 |
+
## Dataset Description
|
| 20 |
+
|
| 21 |
+
- **Repository:** https://github.com/iarata/persian-docs-ocr
|
| 22 |
+
- **Paper:** https://doi.org/10.1007/978-3-031-53969-5_20
|
| 23 |
+
- **Point of Contact:** hajebrahimi.research [at] gmail [dot] com
|
| 24 |
+
|
| 25 |
+
### Summary
|
| 26 |
+
|
| 27 |
+
This dataset contains pre-processed images of Persian characters' contextual forms (except letter گ) from 5 handwritten Persian historical books written in Nastaliq script. The dataset contains 2775 images of 111 classes. The images are in TIFF format and have a resolution of 72 dpi. The images are in black and white and have a size of 395 × 395 pixels.
|
| 28 |
+
|
| 29 |
+
### Languages
|
| 30 |
+
|
| 31 |
+
Persian
|
| 32 |
+
|
| 33 |
+

|
| 34 |
+
|
| 35 |
+
## Dataset Structure
|
| 36 |
+
|
| 37 |
+
The dataset is structured as follows:
|
| 38 |
+
|
| 39 |
+
```
|
| 40 |
+
├── data
|
| 41 |
+
│ ├── 06a9_01.tif
|
| 42 |
+
│ ├── 06a9_02.tif
|
| 43 |
+
│ ├── 06a9_03.tif
|
| 44 |
+
│ ├── 06a9_04.tif
|
| 45 |
+
│ ├── 06a9_05.tif
|
| 46 |
+
│ ├── ...
|
| 47 |
+
│ ├── 06a9_25.tif
|
| 48 |
+
│ │
|
| 49 |
+
│ ├── 06cc_01.tif
|
| 50 |
+
│ ├── 06cc_02.tif
|
| 51 |
+
│ ├── 06cc_03.tif
|
| 52 |
+
│ ├── 06cc_04.tif
|
| 53 |
+
│ ├── 06cc_05.tif
|
| 54 |
+
│ ├── ...
|
| 55 |
+
│ ├── 06cc_25.tif
|
| 56 |
+
│ ├── ...
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
The naming of each image indicates the UTF-16 hexadecimal code ([Hex to String Decoder](https://dencode.com/en/string/hex)) of a character's contextual form followed by the number of the image. In the numbering, every 5 images are from a new book. The contextual form of every character is treated as a separate class resulting in 111 classes.
|
| 60 |
+
|
| 61 |
+
## Dataset Creation
|
| 62 |
+
|
| 63 |
+
For building this dataset 5 historical Persian books from the [Library of Congress](loc.gov)
|
| 64 |
+
|
| 65 |
+
### Source Data
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
The data was collected from 5 historical Persian books from the [Library of Congress](loc.gov). The books are as follows:
|
| 69 |
+
|
| 70 |
+
- [Shah-nameh by Firdausi](https://www.loc.gov/item/2012498868/)
|
| 71 |
+
- [Dīvān](https://www.loc.gov/item/2015481730/)
|
| 72 |
+
- [Kitāb-i Rūmī al-Mawlawī](https://www.loc.gov/item/2016397707)
|
| 73 |
+
- [Gulistān](https://www.loc.gov/item/2017406684/)
|
| 74 |
+
- [Qajar-era poetry](https://www.loc.gov/item/2017498320/)
|
| 75 |
+
|
| 76 |
+
The images were pre-processed using the following steps:
|
| 77 |
+
|
| 78 |
+
Images were first normalized to reduce noise from the background of the characters. The normalized image is then converted to a single-channel grayscale image. Following that, image thresholding is applied to the grayscale image to remove the characters' background. The thresholded image is binarized so that the pixel values greater than 0 become 255 (white), and pixels with a value of 0 (black) remain unchanged. Finally, the binarized image is inversed.
|
| 79 |
+
|
| 80 |
+
### Annotations
|
| 81 |
+
|
| 82 |
+
Before pre-processing the images the characters were cropped from the books and were saved with their UTF-16 hexadecimal code plus the number of the image (e.g. 06a9_01.tif).
|
| 83 |
+
|
| 84 |
+
#### Annotators:
|
| 85 |
+
- [Hajebrahimi Alireza](https://www.linkedin.com/in/alireza-hajebrahimi/)
|
| 86 |
+
- [Hajebrahimi Reyhaneh](https://www.linkedin.com/in/reyhaneh-hajebrahimi-2565451a0/)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
### Citation Information
|
| 90 |
+
|
| 91 |
+
Hajebrahimi, A., Santoso, M.E., Kovacs, M., Kryssanov, V.V. (2024). Few-Shot Learning for Character Recognition in Persian Historical Documents. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds) Machine Learning, Optimization, and Data Science. LOD 2023. Lecture Notes in Computer Science, vol 14505. Springer, Cham. https://doi.org/10.1007/978-3-031-53969-5_20
|
| 92 |
+
|
| 93 |
+
**BibTeX:**
|
| 94 |
+
|
| 95 |
+
```bibtex
|
| 96 |
+
@InProceedings{10.1007/978-3-031-53969-5_20,
|
| 97 |
+
author="Hajebrahimi, Alireza
|
| 98 |
+
and Santoso, Michael Evan
|
| 99 |
+
and Kovacs, Mate
|
| 100 |
+
and Kryssanov, Victor V.",
|
| 101 |
+
editor="Nicosia, Giuseppe
|
| 102 |
+
and Ojha, Varun
|
| 103 |
+
and La Malfa, Emanuele
|
| 104 |
+
and La Malfa, Gabriele
|
| 105 |
+
and Pardalos, Panos M.
|
| 106 |
+
and Umeton, Renato",
|
| 107 |
+
title="Few-Shot Learning for Character Recognition in Persian Historical Documents",
|
| 108 |
+
booktitle="Machine Learning, Optimization, and Data Science",
|
| 109 |
+
year="2024",
|
| 110 |
+
publisher="Springer Nature Switzerland",
|
| 111 |
+
address="Cham",
|
| 112 |
+
pages="259--273",
|
| 113 |
+
abstract="Digitizing historical documents is crucial for the preservation of cultural heritage. The digitization of documents written in Perso-Arabic scripts, however, presents multiple challenges. The Nastaliq calligraphy can be difficult to read even for a native speaker, and the four contextual forms of alphabet letters pose a complex task to current optical character recognition systems. To address these challenges, the presented study develops an approach for character recognition in Persian historical documents using few-shot learning with Siamese Neural Networks. A small, novel dataset is created from Persian historical documents for training and testing purposes. Experiments on the dataset resulted in a 94.75{\%} testing accuracy for the few-shot learning task, and a 67{\%} character recognition accuracy was observed on unseen documents for 111 distinct character classes.",
|
| 114 |
+
isbn="978-3-031-53969-5"
|
| 115 |
+
}
|
| 116 |
+
```
|
data/0627_01.tif
ADDED
|
|
data/0627_02.tif
ADDED
|
|
data/0627_03.tif
ADDED
|
|
data/0627_04.tif
ADDED
|
|
data/0627_05.tif
ADDED
|
|
data/0627_06.tif
ADDED
|
|
data/0627_07.tif
ADDED
|
|
data/0627_08.tif
ADDED
|
|
data/0627_09.tif
ADDED
|
|
data/0627_10.tif
ADDED
|
|
data/0627_11.tif
ADDED
|
|
data/0627_12.tif
ADDED
|
|
data/0627_13.tif
ADDED
|
|
data/0627_14.tif
ADDED
|
|
data/0627_15.tif
ADDED
|
|
data/0627_16.tif
ADDED
|
|
data/0627_17.tif
ADDED
|
|
data/0627_18.tif
ADDED
|
|
data/0627_19.tif
ADDED
|
|
data/0627_20.tif
ADDED
|
|
data/0627_21.tif
ADDED
|
|
data/0627_22.tif
ADDED
|
|
data/0627_23.tif
ADDED
|
|
data/0627_24.tif
ADDED
|
|
data/0627_25.tif
ADDED
|
|
data/0628_01.tif
ADDED
|
|
data/0628_02.tif
ADDED
|
|
data/0628_03.tif
ADDED
|
|
data/0628_04.tif
ADDED
|
|
data/0628_05.tif
ADDED
|
|
data/0628_06.tif
ADDED
|
|
data/0628_07.tif
ADDED
|
|
data/0628_08.tif
ADDED
|
|
data/0628_09.tif
ADDED
|
|
data/0628_10.tif
ADDED
|
|
data/0628_11.tif
ADDED
|
|
data/0628_12.tif
ADDED
|
|
data/0628_13.tif
ADDED
|
|
data/0628_14.tif
ADDED
|
|
data/0628_15.tif
ADDED
|
|
data/0628_16.tif
ADDED
|
|
data/0628_17.tif
ADDED
|
|
data/0628_18.tif
ADDED
|
|
data/0628_19.tif
ADDED
|
|
data/0628_20.tif
ADDED
|
|
data/0628_21.tif
ADDED
|
|
data/0628_22.tif
ADDED
|
|
data/0628_23.tif
ADDED
|
|