File size: 3,934 Bytes
			
			8c68e26  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124  | 
								---
license: mit
language: []
pretty_name: Augmented ImageNet Subset for Classification
dataset_type: image-classification
task_categories:
  - image-classification
size_categories:
  - 1M<n<10M
---
# Dataset Card for imagenet\_augmented
This dataset provides an **augmented version of a subset of ImageNet**, used to benchmark how classical and synthetic augmentations impact large-scale image classification models.
All training data is organized by augmentation method, and the `test/` set remains clean and unmodified. The dataset is compressed in `.zip` format and must be **unzipped before use**.
## π₯ Download & Extract
```bash
wget https://huggingface.co/datasets/ianisdev/imagenet_augmented/resolve/main/imagenet.zip
unzip imagenet.zip
```
## π Dataset Structure
```bash
imagenet/
βββ test/                         # Clean test images (unaltered)
βββ train/
    βββ traditional/             # Color jitter, rotation, flip
    βββ mixup/                   # Interpolated image pairs
    βββ miamix/                  # Color-affine blend
    βββ auto/                    # AutoAugment (torchvision)
    βββ lsb/                     # LSB-level bit noise
    βββ gan/                     # BigGAN class-conditional samples
    βββ vqvae/                   # VQ-VAE reconstructions
    βββ fusion/                  # Pairwise blended jittered samples
```
Each folder uses `ImageFolder` format:
```
train/{augmentation}/{imagenet_class}/image.jpg
test/{imagenet_class}/image.jpg
```
## Dataset Details
### Dataset Description
* **Curated by:** Muhammad Anis Ur Rahman (`@ianisdev`)
* **License:** MIT
* **Language(s):** Not applicable (visual only)
### Dataset Sources
* **Base Dataset:** [ImageNet Subset (Tiny or 1K)](https://image-net.org/)
* **VQ-VAE Model:** [ianisdev/imagenet\_vqvae](https://huggingface.co/ianisdev/imagenet_vqvae) *(if available)*
## Uses
### Direct Use
* Large-scale model training with controlled augmentation types
* Evaluating deep learning robustness at ImageNet-level complexity
### Out-of-Scope Use
* Not designed for exact ImageNet benchmarking (subset only)
* Not recommended for production model training without validation on original ImageNet
## Dataset Creation
### Curation Rationale
To study how augmentation types affect generalization in large, fine-grained image classification tasks.
### Source Data
A compressed ImageNet subset was augmented using multiple synthetic and classical pipelines.
#### Data Collection and Processing
* **Traditional**: Flip, rotate, color jitter
* **Auto**: AutoAugment (ImageNet policy)
* **Mixup, MIA Mix, Fusion**: Pairwise augmentations with affine/jitter
* **GAN**: Used pretrained [BigGAN-deep-256](https://huggingface.co/biggan-deep-256)
* **VQ-VAE**: Reconstructed using a trained encoder-decoder model
#### Who are the source data producers?
Original ImageNet images are from the official [ILSVRC](https://image-net.org/challenges/LSVRC) dataset. Augmented samples were generated by Muhammad Anis Ur Rahman.
## Bias, Risks, and Limitations
* Some classes may contain visually distorted samples
* GAN/VQ-VAE samples can introduce low-fidelity noise
* Dataset may not reflect full ImageNet diversity
### Recommendations
* Use `test/` set for consistent evaluation
* Measure class-level confusion and error propagation
* Evaluate robustness to real-world samples
## Citation
**BibTeX:**
```bash
@misc{rahman2025imagenetaug,
  author = {Muhammad Anis Ur Rahman},
  title = {Augmented ImageNet Dataset for Image Classification},
  year = {2025},
  url = {https://huggingface.co/datasets/ianisdev/imagenet_augmented}
}
```
**APA:**
Rahman, M. A. U. (2025). *Augmented ImageNet Dataset for Image Classification*. Hugging Face. [https://huggingface.co/datasets/ianisdev/imagenet\_augmented](https://huggingface.co/datasets/ianisdev/imagenet_augmented)
 |