huanqia commited on
Commit
0a4f009
·
verified ·
1 Parent(s): 33361f1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -3
README.md CHANGED
@@ -97,6 +97,7 @@ Examples of our MM-IQ:
97
  You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)):
98
 
99
  ```python
 
100
  from datasets import load_dataset
101
 
102
  dataset = load_dataset("huanqia/MM-IQ")
@@ -110,8 +111,10 @@ print(dataset["test"][0])
110
  print(dataset["test"][0]['data_id']) # print the problem id
111
  print(dataset["test"][0]['question']) # print the question text
112
  print(dataset["test"][0]['answer']) # print the answer
113
- print(dataset["test"][0]['image']["bytes"]) # print the image raw bytes
114
  print(dataset["test"][0]['image']['path']) # print the image path
 
 
 
115
  ```
116
 
117
  We have uploaded a demo to illustrate how to access the MM-IQ dataset on Hugging Face, available at [hugging_face_dataset_demo.ipynb](https://github.com/AceCHQ/MMIQ/blob/main/mmiq/jupyter_notebook_demos/hugging_face_dataset_demo.ipynb).
@@ -121,7 +124,7 @@ We have uploaded a demo to illustrate how to access the MM-IQ dataset on Hugging
121
 
122
  ### Data Format
123
 
124
- The dataset is provided in json format and contains the following attributes:
125
 
126
  ```json
127
  {
@@ -129,7 +132,7 @@ The dataset is provided in json format and contains the following attributes:
129
  "answer": [string] The correct answer for the problem,
130
  "data_id": [int] The problem id,
131
  "category": [string] The category of reasoning pattern,
132
- "image": [dict] The image raw bytes and image path (corresponding to the image in data.zip),
133
  }
134
  ```
135
 
 
97
  You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)):
98
 
99
  ```python
100
+ from IPython.display import display, Image
101
  from datasets import load_dataset
102
 
103
  dataset = load_dataset("huanqia/MM-IQ")
 
111
  print(dataset["test"][0]['data_id']) # print the problem id
112
  print(dataset["test"][0]['question']) # print the question text
113
  print(dataset["test"][0]['answer']) # print the answer
 
114
  print(dataset["test"][0]['image']['path']) # print the image path
115
+ # Display the image
116
+ print("Image context:")
117
+ display(Image(dataset["test"][0]['image']["bytes"]))
118
  ```
119
 
120
  We have uploaded a demo to illustrate how to access the MM-IQ dataset on Hugging Face, available at [hugging_face_dataset_demo.ipynb](https://github.com/AceCHQ/MMIQ/blob/main/mmiq/jupyter_notebook_demos/hugging_face_dataset_demo.ipynb).
 
124
 
125
  ### Data Format
126
 
127
+ The dataset is provided in JSON format and contains the following attributes:
128
 
129
  ```json
130
  {
 
132
  "answer": [string] The correct answer for the problem,
133
  "data_id": [int] The problem id,
134
  "category": [string] The category of reasoning pattern,
135
+ "image": [dict] Containing image raw bytes and image path (corresponding to the image in data.zip),
136
  }
137
  ```
138