Metadata Parsing

Given the simplicity of the format, it’s very simple and efficient to fetch and parse metadata about Safetensors weights – i.e. the list of tensors, their types, and their shapes or numbers of parameters – using small (Range) HTTP requests.

This parsing has been implemented in JS in huggingface.js (sample code follows below), but it would be similar in any language.

Example use case

There can be many potential use cases. For instance, we use it on the HuggingFace Hub to display info about models which have safetensors weights:

Usage

JavaScript/TypeScript

Using huggingface.js

import { parseSafetensorsMetadata } from "@huggingface/hub";

const info = await parseSafetensorsMetadata({
	repo: { type: "model", name: "bigscience/bloom" },
});

console.log(info)
// {
//   sharded: true,
//   index: {
//     metadata: { total_size: 352494542848 },
//     weight_map: {
//       'h.0.input_layernorm.bias': 'model_00002-of-00072.safetensors',
//       ...
//     }
//   },
//   headers: {
//     __metadata__: {'format': 'pt'},
//     'h.2.attn.c_attn.weight': {'dtype': 'F32', 'shape': [768, 2304], 'data_offsets': [541012992, 548090880]},
//     ...
//   }
// }

Depending on whether the safetensors weights are sharded into multiple files or not, the output of the call above will be:

export type SafetensorsParseFromRepo =
| {
		sharded: false;
		header: SafetensorsFileHeader;
	}
| {
		sharded: true;
		index: SafetensorsIndexJson;
		headers: SafetensorsShardedHeaders;
	};

where the underlying types are the following:

type FileName = string;

type TensorName = string;
type Dtype = "F64" | "F32" | "F16" | "BF16" | "I64" | "I32" | "I16" | "I8" | "U8" | "BOOL";

interface TensorInfo {
	dtype: Dtype;
	shape: number[];
	data_offsets: [number, number];
}

type SafetensorsFileHeader = Record<TensorName, TensorInfo> & {
	__metadata__: Record<string, string>;
};

interface SafetensorsIndexJson {
	weight_map: Record<TensorName, FileName>;
}

export type SafetensorsShardedHeaders = Record<FileName, SafetensorsFileHeader>;

Python

huggingface_hub provides a Python API to parse safetensors metadata. Use get_safetensors_metadata to get all safetensors metadata of a model. Depending on if the model is sharded or not, one or multiple safetensors files will be parsed.

>>> from huggingface_hub import get_safetensors_metadata

# Parse repo with single weights file
>>> metadata = get_safetensors_metadata("bigscience/bloomz-560m")
>>> metadata
SafetensorsRepoMetadata(
    metadata=None,
    sharded=False,
    weight_map={'h.0.input_layernorm.bias': 'model.safetensors', ...},
    files_metadata={'model.safetensors': SafetensorsFileMetadata(...)}
)
>>> metadata.files_metadata["model.safetensors"].metadata
{'format': 'pt'}

# Parse repo with sharded model (i.e. multiple weights files)
>>> metadata = get_safetensors_metadata("bigscience/bloom")
Parse safetensors files: 100%|██████████████████████████████████████████| 72/72 [00:12<00:00,  5.78it/s]
>>> metadata
SafetensorsRepoMetadata(metadata={'total_size': 352494542848}, sharded=True, weight_map={...}, files_metadata={...})
>>> len(metadata.files_metadata)
72  # All safetensors files have been fetched

# Parse repo that is not a safetensors repo
>>> get_safetensors_metadata("runwayml/stable-diffusion-v1-5")
NotASafetensorsRepoError: 'runwayml/stable-diffusion-v1-5' is not a safetensors repo. Couldn't find 'model.safetensors.index.json' or 'model.safetensors' files.

To parse the metadata of a single safetensors file, use parse_safetensors_file_metadata.

Example output

For instance, here are the number of params per dtype for a few models on the HuggingFace Hub. Also see this issue for more examples of usage.

model safetensors params
gpt2 single-file { ‘F32’ => 137022720 }
roberta-base single-file { ‘F32’ => 124697433, ‘I64’ => 514 }
Jean-Baptiste/camembert-ner single-file { ‘F32’ => 110035205, ‘I64’ => 514 }
roberta-large single-file { ‘F32’ => 355412057, ‘I64’ => 514 }
distilbert-base-german-cased single-file { ‘F32’ => 67431550 }
EleutherAI/gpt-neox-20b sharded { ‘F16’ => 20554568208, ‘U8’ => 184549376 }
bigscience/bloom-560m single-file { ‘F16’ => 559214592 }
bigscience/bloom sharded { ‘BF16’ => 176247271424 }
bigscience/bloom-3b single-file { ‘F16’ => 3002557440 }