Using AutoTrain, you can train a model to classify or regress tabular data easily. All you need to do is select from a list of models and upload your dataset. Parameter tuning is done automatically.
The following models are available for tabular classification / regression.
id,category1,category2,feature1,target
1,A,X,0.3373961604172684,1
2,B,Z,0.6481718720511972,0
3,A,Y,0.36824153984054797,1
4,B,Z,0.9571551589530464,1
5,B,Z,0.14035078041264515,1
6,C,X,0.8700872583584364,1
7,A,Y,0.4736080452737105,0
8,C,Y,0.8009107519796442,1
9,A,Y,0.5204774795512048,0
10,A,Y,0.6788795301189603,0
.
.
.
Your CSV dataset must have two columns: id
and target
.
( data_path: str = None model: str = 'xgboost' username: Optional = None seed: int = 42 train_split: str = 'train' valid_split: Optional = None project_name: str = 'project-name' token: Optional = None push_to_hub: bool = False id_column: str = 'id' target_columns: Union = ['target'] categorical_columns: Optional = None numerical_columns: Optional = None task: str = 'classification' num_trials: int = 10 time_limit: int = 600 categorical_imputer: Optional = None numerical_imputer: Optional = None numeric_scaler: Optional = None )
Parameters
TabularParams is a configuration class for tabular data training parameters.