FluxControlInpaintPipeline is an implementation of Inpainting for Flux.1 Depth/Canny models. It is a pipeline that allows you to inpaint images using the Flux.1 Depth/Canny models. The pipeline takes an image and a mask as input and returns the inpainted image.
FLUX.1 Depth and Canny [dev] is a 12 billion parameter rectified flow transformer capable of generating an image based on a text description while following the structure of a given input image. This is not a ControlNet model.
Control type | Developer | Link |
---|---|---|
Depth | Black Forest Labs | Link |
Canny | Black Forest Labs | Link |
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out this section for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to this blog post to learn more. For an exhaustive list of resources, check out this gist.
import torch
from diffusers import FluxControlInpaintPipeline
from diffusers.models.transformers import FluxTransformer2DModel
from transformers import T5EncoderModel
from diffusers.utils import load_image, make_image_grid
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
from PIL import Image
import numpy as np
pipe = FluxControlInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16,
)
# use following lines if you have GPU constraints
# ---------------------------------------------------------------
transformer = FluxTransformer2DModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
# ---------------------------------------------------------------
pipe.to("cuda")
prompt = "a blue robot singing opera with human-like expressions"
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
head_mask = np.zeros_like(image)
head_mask[65:580,300:642] = 255
mask_image = Image.fromarray(head_mask)
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(image)[0].convert("RGB")
output = pipe(
prompt=prompt,
image=image,
control_image=control_image,
mask_image=mask_image,
num_inference_steps=30,
strength=0.9,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
make_image_grid([image, control_image, mask_image, output.resize(image.size)], rows=1, cols=4).save("output.png")
( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel )
Parameters
transformer
to denoise the encoded image latents. CLIPTextModel
) —
CLIP, specifically
the clip-vit-large-patch14 variant. T5EncoderModel
) —
T5, specifically
the google/t5-v1_1-xxl variant. CLIPTokenizer
) —
Tokenizer of class
CLIPTokenizer. T5TokenizerFast
) —
Second Tokenizer of class
T5TokenizerFast. The Flux pipeline for image inpainting using Flux-dev-Depth/Canny.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None control_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None mask_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None masked_image_latents: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None strength: float = 0.6 num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 7.0 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
str
or List[str]
, optional) —
The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
.
instead. str
or List[str]
, optional) —
The prompt or prompts to be sent to tokenizer_2
and text_encoder_2
. If not defined, prompt
is
will be used instead torch.Tensor
, PIL.Image.Image
, np.ndarray
, List[torch.Tensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) —
Image
, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between [0, 1]
If it’s a tensor or a list
or tensors, the expected shape should be (B, C, H, W)
or (C, H, W)
. If it is a numpy array or a
list of arrays, the expected shape should be (B, H, W, C)
or (H, W, C)
It can also accept image
latents as image
, but if passing latents directly it is not encoded again. torch.Tensor
, PIL.Image.Image
, np.ndarray
, List[torch.Tensor]
, List[PIL.Image.Image]
, List[np.ndarray]
, —
List[List[torch.Tensor]]
, List[List[np.ndarray]]
or List[List[PIL.Image.Image]]
):
The ControlNet input condition to provide guidance to the unet
for generation. If the type is
specified as torch.Tensor
, it is passed to ControlNet as is. PIL.Image.Image
can also be accepted
as an image. The dimensions of the output image defaults to image
’s dimensions. If height and/or
width are passed, image
is resized accordingly. If multiple ControlNets are specified in init
,
images must be passed as a list such that each element of the list can be correctly batched for input
to a single ControlNet. torch.Tensor
, PIL.Image.Image
, np.ndarray
, List[torch.Tensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) —
Image
, numpy array or tensor representing an image batch to mask image
. White pixels in the mask
are repainted while black pixels are preserved. If mask_image
is a PIL image, it is converted to a
single channel (luminance) before use. If it’s a numpy array or pytorch tensor, it should contain one
color channel (L) instead of 3, so the expected shape for pytorch tensor would be (B, 1, H, W)
, (B, H, W)
, (1, H, W)
, (H, W)
. And for numpy array would be for (B, H, W, 1)
, (B, H, W)
, (H, W, 1)
, or (H, W)
. torch.Tensor
, List[torch.Tensor]
) —
Tensor
representing an image batch to mask image
generated by VAE. If not provided, the mask
latents tensor will ge generated by mask_image
. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) —
The height in pixels of the generated image. This is set to 1024 by default for the best results. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) —
The width in pixels of the generated image. This is set to 1024 by default for the best results. float
, optional, defaults to 1.0) —
Indicates extent to transform the reference image
. Must be between 0 and 1. image
is used as a
starting point and more noise is added the higher the strength
. The number of denoising steps depends
on the amount of noise initially added. When strength
is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in num_inference_steps
. A value of 1
essentially ignores image
. int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. List[float]
, optional) —
Custom sigmas to use for the denoising process with schedulers which support a sigmas
argument in
their set_timesteps
method. If not defined, the default behavior when num_inference_steps
is passed
will be used. float
, optional, defaults to 7.0) —
Guidance scale as defined in Classifier-Free Diffusion Guidance.
guidance_scale
is defined as w
of equation 2. of Imagen
Paper. Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
,
usually at the expense of lower image quality. int
, optional, defaults to 1) —
The number of images to generate per prompt. torch.Generator
or List[torch.Generator]
, optional) —
One or a list of torch generator(s)
to make generation deterministic. torch.FloatTensor
, optional) —
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random generator
. torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting.
If not provided, pooled text embeddings will be generated from prompt
input argument. str
, optional, defaults to "pil"
) —
The output format of the generate image. Choose between
PIL: PIL.Image.Image
or np.array
. bool
, optional, defaults to True
) —
Whether or not to return a ~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under
self.processor
in
diffusers.models.attention_processor. Callable
, optional) —
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
. callback_kwargs
will include a list of all tensors as specified by
callback_on_step_end_tensor_inputs
. List
, optional) —
The list of tensor inputs for the callback_on_step_end
function. The tensors specified in the list
will be passed as callback_kwargs
argument. You will only be able to include variables listed in the
._callback_tensor_inputs
attribute of your pipeline class. int
defaults to 512) — Maximum sequence length to use with the prompt
. Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
import torch
from diffusers import FluxControlInpaintPipeline
from diffusers.models.transformers import FluxTransformer2DModel
from transformers import T5EncoderModel
from diffusers.utils import load_image, make_image_grid
from image_gen_aux import DepthPreprocessor # https://github.com/huggingface/image_gen_aux
from PIL import Image
import numpy as np
pipe = FluxControlInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Depth-dev",
torch_dtype=torch.bfloat16,
)
# use following lines if you have GPU constraints
# ---------------------------------------------------------------
transformer = FluxTransformer2DModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="transformer", torch_dtype=torch.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
"sayakpaul/FLUX.1-Depth-dev-nf4", subfolder="text_encoder_2", torch_dtype=torch.bfloat16
)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
# ---------------------------------------------------------------
pipe.to("cuda")
prompt = "a blue robot singing opera with human-like expressions"
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/robot.png")
head_mask = np.zeros_like(image)
head_mask[65:580, 300:642] = 255
mask_image = Image.fromarray(head_mask)
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(image)[0].convert("RGB")
output = pipe(
prompt=prompt,
image=image,
control_image=control_image,
mask_image=mask_image,
num_inference_steps=30,
strength=0.9,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
make_image_grid([image, control_image, mask_image, output.resize(image.size)], rows=1, cols=4).save(
"output.png"
)
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
str
or List[str]
, optional) —
prompt to be encoded str
or List[str]
, optional) —
The prompt or prompts to be sent to the tokenizer_2
and text_encoder_2
. If not defined, prompt
is
used in all text-encoders torch.device
):
torch device int
) —
number of images that should be generated per prompt torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting.
If not provided, pooled text embeddings will be generated from prompt
input argument. float
, optional) —
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. ( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] )
Output class for Stable Diffusion pipelines.