Pipelines provide a high-level, easy to use, API for running machine learning models.
Example: Instantiate pipeline using the pipeline
function.
import { pipeline } from '@xenova/transformers';
let classifier = await pipeline('sentiment-analysis');
let result = await classifier('I love transformers!');
// [{'label': 'POSITIVE', 'score': 0.999817686}]
Callable
new Pipeline(task, tokenizer, model)
.dispose()
⇒ Promise.<void>
._call(texts)
⇒ Promise.<any>
Pipeline
._call(texts, options)
⇒ Promise.<(Array<Object>|Object)>
Pipeline
._call(texts, options)
⇒ Promise.<(Array<Object>|Object)>
Pipeline
._call(question, context, options)
⇒ Promise.<any>
Pipeline
._call(texts, options)
⇒ Promise.<(Array<Object>|Object)>
Pipeline
._call(texts, [options])
⇒ Promise.<any>
Text2TextGenerationPipeline
Text2TextGenerationPipeline
Pipeline
._call(texts, [generate_kwargs])
⇒ Promise.<any>
Pipeline
new ZeroShotClassificationPipeline(task, tokenizer, model)
._call(texts, candidate_labels, options)
⇒ Promise.<(Object|Array<Object>)>
Pipeline
Pipeline
Pipeline
new ImageToTextPipeline(task, tokenizer, model, processor)
._call(images, [generate_kwargs])
⇒ Promise.<(Object|Array<Object>)>
Pipeline
Pipeline
new ImageSegmentationPipeline(task, model, processor)
._call(images, options)
⇒ Promise.<Array>
Pipeline
Pipeline
.pipeline(task, [model], [options])
⇒ Promise.<Pipeline>
~ChunkCallback
: function
~PretrainedOptions
: *
Callable
The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines.
Kind: static class of pipelines
Extends: Callable
Callable
new Pipeline(task, tokenizer, model)
.dispose()
⇒ Promise.<void>
._call(texts)
⇒ Promise.<any>
new Pipeline(task, tokenizer, model)
Create a new Pipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
tokenizer | PreTrainedTokenizer | The tokenizer to use. |
model | PreTrainedModel | The model to use. |
pipeline.dispose()
⇒ Promise.<void>
Disposes the model.
Kind: instance method of Pipeline
Returns: Promise.<void>
- A promise that resolves when the model has been disposed.
pipeline._call(texts)
⇒ Promise.<any>
Executes the task associated with the pipeline.
Kind: instance method of Pipeline
Returns: Promise.<any>
- A promise that resolves to an array containing the inputs and outputs of the task.
Param | Type | Description |
---|---|---|
texts | any | The input texts to be processed. |
Pipeline
Text classification pipeline using any ModelForSequenceClassification
.
Kind: static class of pipelines
Extends: Pipeline
textClassificationPipeline._call(texts, options)
⇒ Promise.<(Array<Object>|Object)>
Executes the text classification task.
Kind: instance method of TextClassificationPipeline
Returns: Promise.<(Array<Object>|Object)>
- A promise that resolves to an array or object containing the predicted labels and scores.
Param | Type | Default | Description |
---|---|---|---|
texts | any | The input texts to be classified. |
|
options | Object | An optional object containing the following properties: |
|
[options.topk] | number | 1 | The number of top predictions to be returned. |
Pipeline
Named Entity Recognition pipeline using any ModelForTokenClassification
.
Kind: static class of pipelines
Extends: Pipeline
tokenClassificationPipeline._call(texts, options)
⇒ Promise.<(Array<Object>|Object)>
Executes the token classification task.
Kind: instance method of TokenClassificationPipeline
Returns: Promise.<(Array<Object>|Object)>
- A promise that resolves to an array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
texts | any | The input texts to be classified. |
options | Object | An optional object containing the following properties: |
Pipeline
Question Answering pipeline using any ModelForQuestionAnswering
.
Example: Run question answering with distilbert-base-uncased-distilled-squad
.
let question = 'Who was Jim Henson?';
let context = 'Jim Henson was a nice puppet.';
let answerer = await pipeline('question-answering', 'Xenova/distilbert-base-uncased-distilled-squad');
let outputs = await answerer(question, context);
console.log(outputs);
// {
// "answer": "a nice puppet",
// "score": 0.5768911502526741
// }
Kind: static class of pipelines
Extends: Pipeline
questionAnsweringPipeline._call(question, context, options)
⇒ Promise.<any>
Executes the question answering task.
Kind: instance method of QuestionAnsweringPipeline
Returns: Promise.<any>
- A promise that resolves to an array or object containing the predicted answers and scores.
Param | Type | Default | Description |
---|---|---|---|
question | string | Array<string> | The question(s) to be answered. |
|
context | string | Array<string> | The context(s) where the answer(s) can be found. |
|
options | Object | An optional object containing the following properties: |
|
[options.topk] | number | 1 | The number of top answer predictions to be returned. |
Pipeline
Masked language modeling prediction pipeline using any ModelWithLMHead
.
Kind: static class of pipelines
Extends: Pipeline
fillMaskPipeline._call(texts, options)
⇒ Promise.<(Array<Object>|Object)>
Fill the masked token in the text(s) given as inputs.
Kind: instance method of FillMaskPipeline
Returns: Promise.<(Array<Object>|Object)>
- A promise that resolves to an array or object containing the predicted tokens and scores.
Param | Type | Default | Description |
---|---|---|---|
texts | any | The masked input texts. |
|
options | Object | An optional object containing the following properties: |
|
[options.topk] | number | 5 | The number of top predictions to be returned. |
Pipeline
Text2TextGenerationPipeline class for generating text using a model that performs text-to-text generation tasks.
Kind: static class of pipelines
Extends: Pipeline
text2TextGenerationPipeline._call(texts, [options])
⇒ Promise.<any>
Fill the masked token in the text(s) given as inputs.
Kind: instance method of Text2TextGenerationPipeline
Returns: Promise.<any>
- An array of objects containing the score, predicted token, predicted token string,
and the sequence with the predicted token filled in, or an array of such arrays (one for each input text).
If only one input text is given, the output will be an array of objects.
Throws:
Error
When the mask token is not found in the input text.Param | Type | Default | Description |
---|---|---|---|
texts | string | Array<string> | The text or array of texts to be processed. |
|
[options] | Object | {} | Options for the fill-mask pipeline. |
[options.topk] | number | 5 | The number of top-k predictions to return. |
Text2TextGenerationPipeline
A pipeline for summarization tasks, inheriting from Text2TextGenerationPipeline.
Kind: static class of pipelines
Extends: Text2TextGenerationPipeline
Text2TextGenerationPipeline
TranslationPipeline class to translate text from one language to another using the provided model and tokenizer.
Kind: static class of pipelines
Extends: Text2TextGenerationPipeline
Pipeline
Language generation pipeline using any ModelWithLMHead
or ModelForCausalLM
.
This pipeline predicts the words that will follow a specified text prompt.
NOTE: For the full list of generation parameters, see GenerationConfig
.
Example: Text generation with Xenova/distilgpt2
(default settings).
let text = 'I enjoy walking with my cute dog,';
let classifier = await pipeline('text-generation', 'Xenova/distilgpt2');
let output = await classifier(text);
console.log(output);
// [{ generated_text: "I enjoy walking with my cute dog, and I love to play with the other dogs." }]
Example: Text generation with Xenova/distilgpt2
(custom settings).
let text = 'Once upon a time, there was';
let classifier = await pipeline('text-generation', 'Xenova/distilgpt2');
let output = await classifier(text, {
temperature: 2,
max_new_tokens: 10,
repetition_penalty: 1.5,
no_repeat_ngram_size: 2,
num_beams: 2,
num_return_sequences: 2,
});
console.log(output);
// [{
// "generated_text": "Once upon a time, there was an abundance of information about the history and activities that"
// }, {
// "generated_text": "Once upon a time, there was an abundance of information about the most important and influential"
// }]
Example: Run code generation with Xenova/codegen-350M-mono
.
let text = 'def fib(n):';
let classifier = await pipeline('text-generation', 'Xenova/codegen-350M-mono');
let output = await classifier(text, {
max_new_tokens: 40,
});
console.log(output[0].generated_text);
// def fib(n):
// if n == 0:
// return 0
// if n == 1:
// return 1
// return fib(n-1) + fib(n-2)
Kind: static class of pipelines
Extends: Pipeline
textGenerationPipeline._call(texts, [generate_kwargs])
⇒ Promise.<any>
Generates text based on an input prompt.
Kind: instance method of TextGenerationPipeline
Returns: Promise.<any>
- The generated text or texts.
Param | Type | Default | Description |
---|---|---|---|
texts | any | The input prompt or prompts to generate text from. |
|
[generate_kwargs] | Object | {} | Additional arguments for text generation. |
Pipeline
NLI-based zero-shot classification pipeline using a ModelForSequenceClassification
trained on NLI (natural language inference) tasks. Equivalent of text-classification
pipelines, but these models don’t require a hardcoded number of potential classes, they
can be chosen at runtime. It usually means it’s slower but it is much more flexible.
Example: Zero shot classification with Xenova/mobilebert-uncased-mnli
.
let text = 'Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.';
let labels = [ 'mobile', 'billing', 'website', 'account access' ];
let classifier = await pipeline('zero-shot-classification', 'Xenova/mobilebert-uncased-mnli');
let output = await classifier(text, labels);
console.log(output);
// {
// sequence: 'Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.',
// labels: [ 'mobile', 'website', 'billing', 'account access' ],
// scores: [ 0.5562091040482018, 0.1843621307860853, 0.13942646639336376, 0.12000229877234923 ]
// }
Example: Zero shot classification with Xenova/nli-deberta-v3-xsmall
(multi-label).
let text = 'I have a problem with my iphone that needs to be resolved asap!';
let labels = [ 'urgent', 'not urgent', 'phone', 'tablet', 'computer' ];
let classifier = await pipeline('zero-shot-classification', 'Xenova/nli-deberta-v3-xsmall');
let output = await classifier(text, labels, { multi_label: true });
console.log(output);
// {
// sequence: 'I have a problem with my iphone that needs to be resolved asap!',
// labels: [ 'urgent', 'phone', 'computer', 'tablet', 'not urgent' ],
// scores: [ 0.9958870956360275, 0.9923963400697035, 0.002333537946160235, 0.0015134138567598765, 0.0010699384208377163 ]
// }
Kind: static class of pipelines
Extends: Pipeline
Pipeline
new ZeroShotClassificationPipeline(task, tokenizer, model)
._call(texts, candidate_labels, options)
⇒ Promise.<(Object|Array<Object>)>
new ZeroShotClassificationPipeline(task, tokenizer, model)
Create a new ZeroShotClassificationPipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
tokenizer | PreTrainedTokenizer | The tokenizer to use. |
model | PreTrainedModel | The model to use. |
zeroShotClassificationPipeline._call(texts, candidate_labels, options)
⇒ Promise.<(Object|Array<Object>)>
Kind: instance method of ZeroShotClassificationPipeline
Returns: Promise.<(Object|Array<Object>)>
- The prediction(s), as a map (or list of maps) from label to score.
Param | Type | Default | Description |
---|---|---|---|
texts | Array.<any> | ||
candidate_labels | Array.<string> | ||
options | Object | Additional options: |
|
[options.hypothesis_template] | string | ""This example is {}."" | The template used to turn each candidate label into an NLI-style hypothesis. The candidate label will replace the {} placeholder. |
[options.multi_label] | boolean | false | Whether or not multiple candidate labels can be true.
If |
Pipeline
Feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks.
Example: Run feature extraction with bert-base-uncased
(without pooling/normalization).
let extractor = await pipeline('feature-extraction', 'Xenova/bert-base-uncased', { revision: 'default' });
let result = await extractor('This is a simple test.');
console.log(result);
// Tensor {
// type: 'float32',
// data: Float32Array [0.05939924716949463, 0.021655935794115067, ...],
// dims: [1, 8, 768]
// }
Example: Run feature extraction with bert-base-uncased
(with pooling/normalization).
let extractor = await pipeline('feature-extraction', 'Xenova/bert-base-uncased', { revision: 'default' });
let result = await extractor('This is a simple test.', { pooling: 'mean', normalize: true });
console.log(result);
// Tensor {
// type: 'float32',
// data: Float32Array [0.03373778983950615, -0.010106077417731285, ...],
// dims: [1, 768]
// }
Example: Calculating embeddings with sentence-transformers
models.
let extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
let result = await extractor('This is a simple test.', { pooling: 'mean', normalize: true });
console.log(result);
// Tensor {
// type: 'float32',
// data: Float32Array [0.09094982594251633, -0.014774246141314507, ...],
// dims: [1, 384]
// }
Kind: static class of pipelines
Extends: Pipeline
featureExtractionPipeline._call(texts, options)
⇒
Extract the features of the input(s).
Kind: instance method of FeatureExtractionPipeline
Returns: The features computed by the model.
Param | Type | Default | Description |
---|---|---|---|
texts | string | Array<string> | The input texts |
|
options | Object | Additional options: |
|
[options.pooling] | string | ""none"" | The pooling method to use. Can be one of: "none", "mean". |
[options.normalize] | boolean | false | Whether or not to normalize the embeddings in the last dimension. |
Pipeline
Pipeline that aims at extracting spoken text contained within some audio.
Example: Transcribe English.
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url);
// { text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country." }
Example: Transcribe English w/ timestamps.
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { return_timestamps: true });
// {
// text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country."
// chunks: [
// { timestamp: [0, 8], text: " And so my fellow Americans ask not what your country can do for you" }
// { timestamp: [8, 11], text: " ask what you can do for your country." }
// ]
// }
Example: Transcribe English w/ word-level timestamps.
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en', {
revision: 'output_attentions',
});
let output = await transcriber(url, { return_timestamps: 'word' });
// {
// "text": " And so my fellow Americans ask not what your country can do for you ask what you can do for your country.",
// "chunks": [
// { "text": " And", "timestamp": [0, 0.78] },
// { "text": " so", "timestamp": [0.78, 1.06] },
// { "text": " my", "timestamp": [1.06, 1.46] },
// ...
// { "text": " for", "timestamp": [9.72, 9.92] },
// { "text": " your", "timestamp": [9.92, 10.22] },
// { "text": " country.", "timestamp": [10.22, 13.5] }
// ]
// }
Example: Transcribe French.
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/french-audio.mp3';
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-small');
let output = await transcriber(url, { language: 'french', task: 'transcribe' });
// { text: " J'adore, j'aime, je n'aime pas, je déteste." }
Example: Translate French to English.
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/french-audio.mp3';
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-small');
let output = await transcriber(url, { language: 'french', task: 'translate' });
// { text: " I love, I like, I don't like, I hate." }
Example: Transcribe/translate audio longer than 30 seconds.
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/ted_60.wav';
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { chunk_length_s: 30, stride_length_s: 5 });
// { text: " So in college, I was a government major, which means [...] So I'd start off light and I'd bump it up" }
Kind: static class of pipelines
Extends: Pipeline
Pipeline
new AutomaticSpeechRecognitionPipeline(task, tokenizer, model, processor)
Create a new AutomaticSpeechRecognitionPipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
tokenizer | PreTrainedTokenizer | The tokenizer to use. |
model | PreTrainedModel | The model to use. |
processor | Processor | The processor to use. |
automaticSpeechRecognitionPipeline._call(audio, [kwargs])
⇒ Promise.<Object>
Asynchronously processes audio and generates text transcription using the model.
Kind: instance method of AutomaticSpeechRecognitionPipeline
Returns: Promise.<Object>
- A Promise that resolves to an object containing the transcription text and optionally timestamps if return_timestamps
is true
.
Param | Type | Default | Description |
---|---|---|---|
audio | Float32Array | Array<Float32Array> | The audio to be transcribed. Can be a single Float32Array or an array of Float32Arrays. |
|
[kwargs] | Object | {} | Optional arguments. |
[kwargs.return_timestamps] | boolean | 'word' | Whether to return timestamps or not. Default is |
|
[kwargs.chunk_length_s] | number | The length of audio chunks to process in seconds. Default is 0 (no chunking). |
|
[kwargs.stride_length_s] | number | The length of overlap between consecutive audio chunks in seconds. If not provided, defaults to |
|
[kwargs.chunk_callback] | ChunkCallback | Callback function to be called with each chunk processed. |
|
[kwargs.force_full_sequences] | boolean | Whether to force outputting full sequences or not. Default is |
|
[kwargs.language] | string | The source language. Default is |
|
[kwargs.task] | string | The task to perform. Default is |
|
[kwargs.forced_decoder_ids] | Array.<Array<number>> | A list of pairs of integers which indicates a mapping from generation indices to token indices that will be forced before sampling. For example, [[1, 123]] means the second generated token will always be a token of index 123. |
Pipeline
Image To Text pipeline using a AutoModelForVision2Seq
. This pipeline predicts a caption for a given image.
Kind: static class of pipelines
Extends: Pipeline
Pipeline
new ImageToTextPipeline(task, tokenizer, model, processor)
._call(images, [generate_kwargs])
⇒ Promise.<(Object|Array<Object>)>
new ImageToTextPipeline(task, tokenizer, model, processor)
Create a new ImageToTextPipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
tokenizer | PreTrainedTokenizer | The tokenizer to use. |
model | PreTrainedModel | The model to use. |
processor | Processor | The processor to use. |
imageToTextPipeline._call(images, [generate_kwargs])
⇒ Promise.<(Object|Array<Object>)>
Assign labels to the image(s) passed as inputs.
Kind: instance method of ImageToTextPipeline
Returns: Promise.<(Object|Array<Object>)>
- A Promise that resolves to an object (or array of objects) containing the generated text(s).
Param | Type | Default | Description |
---|---|---|---|
images | Array.<any> | The images to be captioned. |
|
[generate_kwargs] | Object | {} | Optional generation arguments. |
Pipeline
Image classification pipeline using any AutoModelForImageClassification
.
This pipeline predicts the class of an image.
Example: Classify an image.
let classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224');
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
let outputs = await classifier(url);
// Array(1) [
// {label: 'tiger, Panthera tigris', score: 0.632695734500885},
// ]
Example: Classify an image and return top n
classes.
let classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224');
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
let outputs = await classifier(url, { topk: 3 });
// Array(3) [
// {label: 'tiger, Panthera tigris', score: 0.632695734500885},
// {label: 'tiger cat', score: 0.3634825646877289},
// {label: 'lion, king of beasts, Panthera leo', score: 0.00045060308184474707},
// ]
Example: Classify an image and return all classes.
let classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224');
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
let outputs = await classifier(url, { topk: 0 });
// Array(1000) [
// {label: 'tiger, Panthera tigris', score: 0.632695734500885},
// {label: 'tiger cat', score: 0.3634825646877289},
// {label: 'lion, king of beasts, Panthera leo', score: 0.00045060308184474707},
// {label: 'jaguar, panther, Panthera onca, Felis onca', score: 0.00035465499968267977},
// ...
// ]
Kind: static class of pipelines
Extends: Pipeline
Pipeline
new ImageClassificationPipeline(task, model, processor)
Create a new ImageClassificationPipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model to use. |
processor | Processor | The processor to use. |
imageClassificationPipeline._call(images, options)
⇒ Promise.<any>
Classify the given images.
Kind: instance method of ImageClassificationPipeline
Returns: Promise.<any>
- The top classification results for the images.
Param | Type | Default | Description |
---|---|---|---|
images | any | The images to classify. |
|
options | Object | The options to use for classification. |
|
[options.topk] | number | 1 | The number of top results to return. |
Pipeline
Image segmentation pipeline using any AutoModelForXXXSegmentation
.
This pipeline predicts masks of objects and their classes.
Kind: static class of pipelines
Extends: Pipeline
Pipeline
new ImageSegmentationPipeline(task, model, processor)
._call(images, options)
⇒ Promise.<Array>
new ImageSegmentationPipeline(task, model, processor)
Create a new ImageSegmentationPipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model to use. |
processor | Processor | The processor to use. |
imageSegmentationPipeline._call(images, options)
⇒ Promise.<Array>
Segment the input images.
Kind: instance method of ImageSegmentationPipeline
Returns: Promise.<Array>
- The annotated segments.
Param | Type | Default | Description |
---|---|---|---|
images | Array | The input images. |
|
options | Object | The options to use for segmentation. |
|
[options.threshold] | number | 0.5 | Probability threshold to filter out predicted masks. |
[options.mask_threshold] | number | 0.5 | Threshold to use when turning the predicted masks into binary values. |
[options.overlap_mask_area_threshold] | number | 0.8 | Mask overlap threshold to eliminate small, disconnected segments. |
[options.subtask] | null | string |
| Segmentation task to be performed. One of [ |
[options.label_ids_to_fuse] | Array |
| List of label ids to fuse. If not set, do not fuse any labels. |
[options.target_sizes] | Array |
| List of target sizes for the input images. If not set, use the original image sizes. |
Pipeline
Zero shot image classification pipeline. This pipeline predicts the class of
an image when you provide an image and a set of candidate_labels
.
Kind: static class of pipelines
Extends: Pipeline
Pipeline
new ZeroShotImageClassificationPipeline(task, tokenizer, model, processor)
Create a new ZeroShotImageClassificationPipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
tokenizer | PreTrainedTokenizer | The tokenizer to use. |
model | PreTrainedModel | The model to use. |
processor | Processor | The processor to use. |
zeroShotImageClassificationPipeline._call(images, candidate_labels, options)
⇒ Promise.<any>
Classify the input images with candidate labels using a zero-shot approach.
Kind: instance method of ZeroShotImageClassificationPipeline
Returns: Promise.<any>
- An array of classifications for each input image or a single classification object if only one input image is provided.
Param | Type | Description |
---|---|---|
images | Array | The input images. |
candidate_labels | Array | The candidate labels. |
options | Object | The options for the classification. |
[options.hypothesis_template] | string | The hypothesis template to use for zero-shot classification. Default: "This is a photo of {}". |
Pipeline
Object detection pipeline using any AutoModelForObjectDetection
.
This pipeline predicts bounding boxes of objects and their classes.
Example: Run object-detection with facebook/detr-resnet-50
.
let img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
let detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
let output = await detector(img, { threshold: 0.9 });
// [{
// "score": 0.9976370930671692,
// "label": "remote",
// "box": { "xmin": 31, "ymin": 68, "xmax": 190, "ymax": 118 }
// },
// ...
// {
// "score": 0.9984092116355896,
// "label": "cat",
// "box": { "xmin": 331, "ymin": 19, "xmax": 649, "ymax": 371 }
// }]
Kind: static class of pipelines
Extends: Pipeline
Pipeline
new ObjectDetectionPipeline(task, model, processor)
Create a new ObjectDetectionPipeline.
Param | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model to use. |
processor | Processor | The processor to use. |
objectDetectionPipeline._call(images, options)
Detect objects (bounding boxes & classes) in the image(s) passed as inputs.
Kind: instance method of ObjectDetectionPipeline
Param | Type | Default | Description |
---|---|---|---|
images | Array.<any> | The input images. |
|
options | Object | The options for the object detection. |
|
[options.threshold] | number | 0.9 | The threshold used to filter boxes by score. |
[options.percentage] | boolean | false | Whether to return the boxes coordinates in percentage (true) or in pixels (false). |
pipelines.pipeline(task, [model], [options])
⇒ Promise.<Pipeline>
Utility factory method to build a [Pipeline
] object.
Kind: static method of pipelines
Returns: Promise.<Pipeline>
- A Pipeline object for the specified task.
Throws:
Error
If an unsupported pipeline is requested.Param | Type | Default | Description |
---|---|---|---|
task | string | The task of the pipeline. |
|
[model] | string | null | The name of the pre-trained model to use. If not specified, the default model for the task will be used. |
[options] | PretrainedOptions | Optional parameters for the pipeline. |
pipelines~ChunkCallback
: function
Kind: inner typedef of pipelines
Param | Type | Description |
---|---|---|
chunk | Chunk | The chunk to process. |
pipelines~PretrainedOptions
: *
Kind: inner typedef of pipelines