The depth-guided stable diffusion model was created by the researchers and engineers from CompVis, Stability AI, and LAION, as part of Stable Diffusion 2.0. It uses MiDas to infer depth based on an image.
StableDiffusionDepth2ImgPipeline lets you pass a text prompt and an initial image to condition the generation of new images as well as a depth_map
to preserve the images’ structure.
The original codebase can be found here:
Available Checkpoints are:
( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers depth_estimator: DPTForDepthEstimation feature_extractor: DPTFeatureExtractor )
Parameters
CLIPTextModel
) —
Frozen text-encoder. Stable Diffusion uses the text portion of
CLIP, specifically
the clip-vit-large-patch14 variant.
CLIPTokenizer
) —
Tokenizer of class
CLIPTokenizer.
unet
to denoise the encoded image latents. Can be one of
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.
Pipeline for text-guided image to image generation using Stable Diffusion.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
In addition the pipeline inherits the following loading methods:
as well as the following saving methods:
(
prompt: typing.Union[str, typing.List[str]] = None
image: typing.Union[torch.FloatTensor, PIL.Image.Image, numpy.ndarray, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image], typing.List[numpy.ndarray]] = None
depth_map: typing.Optional[torch.FloatTensor] = None
strength: float = 0.8
num_inference_steps: typing.Optional[int] = 50
guidance_scale: typing.Optional[float] = 7.5
negative_prompt: typing.Union[typing.List[str], str, NoneType] = None
num_images_per_prompt: typing.Optional[int] = 1
eta: typing.Optional[float] = 0.0
generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None
prompt_embeds: typing.Optional[torch.FloatTensor] = None
negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None
output_type: typing.Optional[str] = 'pil'
return_dict: bool = True
callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None
callback_steps: int = 1
cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None
)
→
StableDiffusionPipelineOutput or tuple
Parameters
str
or List[str]
, optional) —
The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
.
instead.
torch.FloatTensor
, PIL.Image.Image
, np.ndarray
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) —
Image
, or tensor representing an image batch, that will be used as the starting point for the
process. Can accept image latents as image
only if depth_map
is not None
.
torch.FloatTensor
, optional) —
depth prediction that will be used as additional conditioning for the image generation process. If not
defined, it will automatically predicts the depth via self.depth_estimator
.
float
, optional, defaults to 0.8) —
Conceptually, indicates how much to transform the reference image
. Must be between 0 and 1. image
will be used as a starting point, adding more noise to it the larger the strength
. The number of
denoising steps depends on the amount of noise initially added. When strength
is 1, added noise will
be maximum and the denoising process will run for the full number of iterations specified in
num_inference_steps
. A value of 1, therefore, essentially ignores image
.
int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter will be modulated by strength
.
float
, optional, defaults to 7.5) —
Guidance scale as defined in Classifier-Free Diffusion Guidance.
guidance_scale
is defined as w
of equation 2. of Imagen
Paper. Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
,
usually at the expense of lower image quality.
str
or List[str]
, optional) —
The prompt or prompts not to guide the image generation. If not defined, one has to pass
negative_prompt_embeds
. instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
int
, optional, defaults to 1) —
The number of images to generate per prompt.
float
, optional, defaults to 0.0) —
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
schedulers.DDIMScheduler, will be ignored for others.
torch.Generator
, optional) —
One or a list of torch generator(s)
to make generation deterministic.
torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument.
torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input
argument.
str
, optional, defaults to "pil"
) —
The output format of the generate image. Choose between
PIL: PIL.Image.Image
or np.array
.
bool
, optional, defaults to True
) —
Whether or not to return a StableDiffusionPipelineOutput instead of a
plain tuple.
Callable
, optional) —
A function that will be called every callback_steps
steps during inference. The function will be
called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
int
, optional, defaults to 1) —
The frequency at which the callback
function will be called. If not specified, the callback will be
called at every step.
dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under
self.processor
in
diffusers.cross_attention.
Returns
StableDiffusionPipelineOutput or tuple
StableDiffusionPipelineOutput if return_dict
is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of
bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the
safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from diffusers import StableDiffusionDepth2ImgPipeline
>>> pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
... "stabilityai/stable-diffusion-2-depth",
... torch_dtype=torch.float16,
... )
>>> pipe.to("cuda")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> init_image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "two tigers"
>>> n_propmt = "bad, deformed, ugly, bad anotomy"
>>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_propmt, strength=0.7).images[0]
( slice_size: typing.Union[str, int, NoneType] = 'auto' )
Parameters
str
or int
, optional, defaults to "auto"
) —
When "auto"
, halves the input to the attention heads, so attention will be computed in two steps. If
"max"
, maximum amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as attention_head_dim // slice_size
. In this case, attention_head_dim
must be a multiple of slice_size
.
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease.
Disable sliced attention computation. If enable_attention_slicing
was previously called, attention is
computed in one step.
( attention_op: typing.Optional[typing.Callable] = None )
Parameters
Callable
, optional) —
Override the default None
operator for use as op
argument to the
memory_efficient_attention()
function of xFormers.
Enable memory efficient attention from xFormers.
When this option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed up during training is not guaranteed.
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes precedent.
Examples:
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
>>> # Workaround for not accepting attention shape using VAE for Flash Attention
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
Disable memory efficient attention from xFormers.
( pretrained_model_name_or_path: typing.Union[str, typing.List[str], typing.Dict[str, torch.Tensor], typing.List[typing.Dict[str, torch.Tensor]]] token: typing.Union[str, typing.List[str], NoneType] = None **kwargs )
Parameters
str
or os.PathLike
or List[str or os.PathLike]
or Dict
or List[Dict]
) —
Can be either one of the following or a list of them:
sd-concepts-library/low-poly-hd-logos-icons
) of a
pretrained model hosted on the Hub../my_text_inversion_directory/
) containing the textual
inversion weights../my_text_inversions.pt
) containing textual inversion weights.str
or List[str]
, optional) —
Override the token to use for the textual inversion weights. If pretrained_model_name_or_path
is a
list, then token
must also be a list of equal length.
str
, optional) —
Name of a custom weight file. This should be used when:
text_inv.bin
.Union[str, os.PathLike]
, optional) —
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
bool
, optional, defaults to False
) —
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
bool
, optional, defaults to False
) —
Whether or not to resume downloading the model weights and configuration files. If set to False
, any
incompletely downloaded files are deleted.
Dict[str, str]
, optional) —
A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request.
bool
, optional, defaults to False
) —
Whether to only load local model weights and configuration files or not. If set to True
, the model
won’t be downloaded from the Hub.
str
or bool, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, the token generated from
diffusers-cli login
(stored in ~/.huggingface
) is used.
str
, optional, defaults to "main"
) —
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
str
, optional, defaults to ""
) —
The subfolder location of a model file within a larger model repository on the Hub or locally.
str
, optional) —
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
Load textual inversion embeddings into the text encoder of StableDiffusionPipeline (both 🤗 Diffusers and Automatic1111 formats are supported).
Example:
To load a textual inversion embedding vector in 🤗 Diffusers format:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first (for example from civitAI) and then load the vector
locally:
from diffusers import StableDiffusionPipeline
import torch
model_id = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
( pretrained_model_name_or_path_or_dict: typing.Union[str, typing.Dict[str, torch.Tensor]] **kwargs )
Parameters
str
or os.PathLike
or dict
) —
Can be either:
google/ddpm-celebahq-256
) of a pretrained model hosted on
the Hub../my_model_directory
) containing the model weights saved
with ModelMixin.save_pretrained().Union[str, os.PathLike]
, optional) —
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
bool
, optional, defaults to False
) —
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
bool
, optional, defaults to False
) —
Whether or not to resume downloading the model weights and configuration files. If set to False
, any
incompletely downloaded files are deleted.
Dict[str, str]
, optional) —
A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request.
bool
, optional, defaults to False
) —
Whether to only load local model weights and configuration files or not. If set to True
, the model
won’t be downloaded from the Hub.
str
or bool, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, the token generated from
diffusers-cli login
(stored in ~/.huggingface
) is used.
str
, optional, defaults to "main"
) —
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
str
, optional, defaults to ""
) —
The subfolder location of a model file within a larger model repository on the Hub or locally.
str
, optional) —
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
Load pretrained LoRA attention processor layers into UNet2DConditionModel and
CLIPTextModel
.
( save_directory: typing.Union[str, os.PathLike] unet_lora_layers: typing.Dict[str, typing.Union[torch.nn.modules.module.Module, torch.Tensor]] = None text_encoder_lora_layers: typing.Dict[str, torch.nn.modules.module.Module] = None is_main_process: bool = True weight_name: str = None save_function: typing.Callable = None safe_serialization: bool = False )
Parameters
str
or os.PathLike
) —
Directory to save LoRA parameters to. Will be created if it doesn’t exist.
Dict[str, torch.nn.Module]
or Dict[str, torch.Tensor]
) —
State dict of the LoRA layers corresponding to the UNet.
Dict[str, torch.nn.Module] or
Dict[str, torch.Tensor]) -- State dict of the LoRA layers corresponding to the
text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes 🤗 Transformers.
bool
, optional, defaults to True
) —
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set is_main_process=True
only on the main
process to avoid race conditions.
Callable
) —
The function to use to save the state dictionary. Useful during distributed training when you need to
replace torch.save
with another method. Can be configured with the environment variable
DIFFUSERS_SAVE_MODE
.
Save the LoRA parameters corresponding to the UNet and text encoder.
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
torch.device('meta') and loaded to GPU only when their specific submodule has its
forward` method called.