Example Zoo
Below contains a non-exhaustive list of tutorials and scripts showcasing đ¤ Accelerate
Official Accelerate Examples:
Basic Examples
These examples showcase the base features of Accelerate and are a great starting point
Feature Specific Examples
These examples showcase specific features that the Accelerate framework offers
Full Examples
These examples showcase every feature in Accelerate at once that was shown in âFeature Specific Examplesâ
Integration Examples
These are tutorials from libraries that integrate with đ¤ Accelerate:
Donât find your integration here? Make a PR to include it!
Amphion
Catalyst
DALLE2-pytorch
đ¤ diffusers
fastai
GradsFlow
imagen-pytorch
Kornia
PyTorch Accelerated
PyTorch3D
Stable-Dreamfusion
Tez
trlx
Comfy-UI
In Science
Below contains a non-exhaustive list of papers utilizing đ¤ Accelerate.
Donât find your paper here? Make a PR to include it!
- Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, Omer Levy: âPick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generationâ, 2023; arXiv:2305.01569.
- Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, Ee-Peng Lim: âPlan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Modelsâ, 2023; arXiv:2305.04091.
- Arthur Câmara, Claudia Hauff: âMoving Stuff Around: A study on efficiency of moving documents into memory for Neural IR modelsâ, 2022; arXiv:2205.08343.
- Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher RĂŠ, Ion Stoica, Ce Zhang: âHigh-throughput Generative Inference of Large Language Models with a Single GPUâ, 2023; arXiv:2303.06865.
- Peter Melchior, Yan Liang, ChangHoon Hahn, Andy Goulding: âAutoencoding Galaxy Spectra I: Architectureâ, 2022; arXiv:2211.07890.
- Jiaao Chen, Aston Zhang, Mu Li, Alex Smola, Diyi Yang: âA Cheaper and Better Diffusion Language Model with Soft-Masked Noiseâ, 2023; arXiv:2304.04746.
- Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, Angjoo Kanazawa: âInstruct-NeRF2NeRF: Editing 3D Scenes with Instructionsâ, 2023; arXiv:2303.12789.
- Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, Andrea Vedaldi: âRealFusion: 360° Reconstruction of Any Object from a Single Imageâ, 2023; arXiv:2302.10663.
- Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, Hongsheng Li: âBetter Aligning Text-to-Image Models with Human Preferenceâ, 2023; arXiv:2303.14420.
- Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, Yueting Zhuang: âHuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFaceâ, 2023; arXiv:2303.17580.
- Yue Yang, Wenlin Yao, Hongming Zhang, Xiaoyang Wang, Dong Yu, Jianshu Chen: âZ-LaVI: Zero-Shot Language Solver Fueled by Visual Imaginationâ, 2022; arXiv:2210.12261.
- Sheng-Yen Chou, Pin-Yu Chen, Tsung-Yi Ho: âHow to Backdoor Diffusion Models?â, 2022; arXiv:2212.05400.
- Junyoung Seo, Wooseok Jang, Min-Seop Kwak, Jaehoon Ko, Hyeonsu Kim, Junho Kim, Jin-Hwa Kim, Jiyoung Lee, Seungryong Kim: âLet 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generationâ, 2023; arXiv:2303.07937.
- Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-Elor, Daniel Cohen-Or: âLocalizing Object-level Shape Variations with Text-to-Image Diffusion Modelsâ, 2023; arXiv:2303.11306.
- DĂdac SurĂs, Sachit Menon, Carl Vondrick: âViperGPT: Visual Inference via Python Execution for Reasoningâ, 2023; arXiv:2303.08128.
- Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, Qifeng Chen: âFateZero: Fusing Attentions for Zero-shot Text-based Video Editingâ, 2023; arXiv:2303.09535.
- Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, Yejin Choi: âNaturalProver: Grounded Mathematical Proof Generation with Language Modelsâ, 2022; arXiv:2205.12910.
- Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: âTEXTure: Text-Guided Texturing of 3D Shapesâ, 2023; arXiv:2302.01721.
- Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang: âLearning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancementâ, 2023; arXiv:2303.04603.
- Shun Shao, Yftah Ziser, Shay Cohen: âErasure of Unaligned Attributes from Neural Representationsâ, 2023; arXiv:2302.02997.
- Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, Minjoon Seo: âIn-Context Instruction Learningâ, 2023; arXiv:2302.14691.
- Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: âPrismer: A Vision-Language Model with An Ensemble of Expertsâ, 2023; arXiv:2303.02506.
- Haoyu Chen, Zhihua Wang, Yang Yang, Qilin Sun, Kede Ma: âLearning a Deep Color Difference Metric for Photographic Imagesâ, 2023; arXiv:2303.14964.
- Van-Hoang Le, Hongyu Zhang: âLog Parsing with Prompt-based Few-shot Learningâ, 2023; arXiv:2302.07435.
- Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui: âDo Deep Neural Networks Capture Compositionality in Arithmetic Reasoning?â, 2023; arXiv:2302.07866.
- Ruoyao Wang, Peter Jansen, Marc-Alexandre CĂ´tĂŠ, Prithviraj Ammanabrolu: âBehavior Cloned Transformers are Neurosymbolic Reasonersâ, 2022; arXiv:2210.07382.
- Martin Wessel, TomĂĄĹĄ Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: âIntroducing MBIB â the first Media Bias Identification Benchmark Task and Dataset Collectionâ, 2023; arXiv:2304.13148. DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882].
- Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, Daniel Cohen-Or: âAttend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Modelsâ, 2023; arXiv:2301.13826.
- Marcio Fonseca, Yftah Ziser, Shay B. Cohen: âFactorizing Content and Budget Decisions in Abstractive Summarization of Long Documentsâ, 2022; arXiv:2205.12486.
- Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: âTEXTure: Text-Guided Texturing of 3D Shapesâ, 2023; arXiv:2302.01721.
- Tianxing He, Jingyu Zhang, Tianle Wang, Sachin Kumar, Kyunghyun Cho, James Glass, Yulia Tsvetkov: âOn the Blind Spots of Model-Based Evaluation Metrics for Text Generationâ, 2022; arXiv:2212.10020.
- Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham: âIn-Context Retrieval-Augmented Language Modelsâ, 2023; arXiv:2302.00083.
- Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P. Xing, Hao Zhang: âMPCFormer: fast, performant and private Transformer inference with MPCâ, 2022; arXiv:2211.01452.
- Baolin Peng, Michel Galley, Pengcheng He, Chris Brockett, Lars Liden, Elnaz Nouri, Zhou Yu, Bill Dolan, Jianfeng Gao: âGODEL: Large-Scale Pre-Training for Goal-Directed Dialogâ, 2022; arXiv:2206.11309.
- Egil Rønningstad, Erik Velldal, Lilja Ăvrelid: âEntity-Level Sentiment Analysis (ELSA): An exploratory task surveyâ, 2023, Proceedings of the 29th International Conference on Computational Linguistics, 2022, pages 6773-6783; arXiv:2304.14241.
- Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, Sergey Levine: âOffline RL for Natural Language Generation with Implicit Language Q Learningâ, 2022; arXiv:2206.11871.
- Zhiruo Wang, Shuyan Zhou, Daniel Fried, Graham Neubig: âExecution-Based Evaluation for Open-Domain Code Generationâ, 2022; arXiv:2212.10481.
- Minh-Long Luu, Zeyi Huang, Eric P. Xing, Yong Jae Lee, Haohan Wang: âExpeditious Saliency-guided Mix-up through Random Gradient Thresholdingâ, 2022; arXiv:2212.04875.
- Jun Hao Liew, Hanshu Yan, Daquan Zhou, Jiashi Feng: âMagicMix: Semantic Mixing with Diffusion Modelsâ, 2022; arXiv:2210.16056.
- Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: âLiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learnersâ, 2021; arXiv:2110.06274.
< > Update on GitHub