AMD Ryzen AI

Ryzen AI support is work in progress and will greatly be improved and extended in the coming months.

AMD’s Ryzen™ AI family of laptop processors provide users with an integrated Neural Processing Unit (NPU) which offloads the host CPU and GPU from AI processing tasks. Ryzen™ AI software consists of the Vitis™ AI execution provider (EP) for ONNX Runtime combined with quantization tools and a pre-optimized model zoo. All of this is made possible based on Ryzen™ AI technology built on AMD XDNA™ architecture, purpose-built to run AI workloads efficiently and locally, offering a host of benefits for the developer innovating the next groundbreaking AI app.

Optimum-AMD provides easy interface for loading and inference of Hugging Face models on Ryzen AI accelerator.

Installation

Ryzen AI Environment setup

A Ryzen AI environment needs to be enabled to use this library. Please refer to Ryzen AI’s Installation and Runtime Setup.

Note: The RyzenAI Model requires a runtime configuration file. A default version of this runtime configuration file can be found in the Ryzen AI VOE package, extracted during installation under the name vaip_config.json. For more information refer to runtime-configuration-file

In case no runtime configuration file is provided, the library will use the configuration defined in RyzenAIXXX model class. For available configs see ryzenai/configs/.

Install Optimum-amd

git clone https://github.com/huggingface/optimum-amd.git
cd optimum-amd
pip install -e .[ryzenai]

Inference with pre-optimized models

RyzenAI provides pre-optimized models for various tasks such as image classification, super-resolution, object-detection, etc. Here’s an example to run Resnet for image classification:

>>> from functools import partial

>>> from datasets import load_dataset

>>> from optimum.amd.ryzenai import RyzenAIModelForImageClassification
>>> from transformers import AutoImageProcessor, pipeline


>>> model_id = "amd/resnet50"

>>> model = RyzenAIModelForImageClassification.from_pretrained(model_id)
>>> processor = AutoImageProcessor.from_pretrained(model_id)

>>> # Load image
>>> dataset = load_dataset("imagenet-1k", split="validation", streaming=True, trust_remote_code=True)
>>> data = next(iter(dataset))
>>> image = data["image"]

>>> cls_pipe = pipeline(
...    "image-classification", model=model, image_processor=partial(processor, data_format="channels_last")
... )
>>> outputs = cls_pipe(image)
>>> print(outputs)
Ryzen pre-optimized models are not compatible with transformer pipelines for inference.

Minimal working example for 🤗 Timm

Pre-requisites

Load model with Ryzen AI class

>>> import requests
>>> from PIL import Image

>>> from optimum.amd.ryzenai import RyzenAIModelForImageClassification
>>> from transformers import PretrainedConfig, pipeline

>>> import timm
>>> import torch

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> #  See [quantize.py](https://huggingface.co/mohitsha/timm-resnet18-onnx-quantized-ryzen/blob/main/quantize.py) for more details on quantization.
>>> quantized_model_path = "mohitsha/timm-resnet18-onnx-quantized-ryzen"

>>> model = RyzenAIModelForImageClassification.from_pretrained(quantized_model_path)

>>> config = PretrainedConfig.from_pretrained(quantized_model_path)

>>> # preprocess config
>>> data_config = timm.data.resolve_data_config(pretrained_cfg=config.pretrained_cfg)
>>> transforms = timm.data.create_transform(**data_config, is_training=False)

>>> output = model(transforms(image).unsqueeze(0)).logits  # unsqueeze single image into batch of 1
>>> top5_probabilities, top5_class_indices = torch.topk(torch.softmax(output, dim=1) * 100, k=5)
Timm models are not compatible with transformer pipelines for inference.

Minimal working example for 🤗 Transformers

Pre-requisites

Load model with Ryzen AI class

To load a transformers model and run inference with RyzenAI, you can just replace your AutoModelForXxx class with the corresponding RyzenAIModelForXxx class.

See below example for Image classification.

>>> import requests
>>> from PIL import Image

>>> from optimum.amd.ryzenai import RyzenAIModelForImageClassification
>>> from transformers import AutoFeatureExtractor, pipeline

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> 
>>> # See [quantize.py](https://huggingface.co/mohitsha/transformers-resnet18-onnx-quantized-ryzen/blob/main/quantize.py) for more details on quantization.
>>> quantized_model_path = "mohitsha/transformers-resnet18-onnx-quantized-ryzen"

>>> model = RyzenAIModelForImageClassification.from_pretrained(quantized_model_path)
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(quantized_model_path)

>>> cls_pipe = pipeline("image-classification", model=model, feature_extractor=feature_extractor)
>>> outputs = cls_pipe(image)
Optimum-AMD supports only ResNet models from Transformers for inference.
< > Update on GitHub