The VideoProcessor
provides a unified API for video pipelines to prepare inputs for VAE encoding and post-processing outputs once they’re decoded. The class inherits VaeImageProcessor
so it includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays.
( video height: Optional = None width: Optional = None )
Parameters
List[PIL.Image]
, List[List[PIL.Image]]
, torch.Tensor
, np.array
, List[torch.Tensor]
, List[np.array]
) —
The input video. It can be one of the following:(num_frames, num_channels, height, width)
).(num_frames, height, width, num_channels)
).(num_frames, num_channels, height, width)
).(num_frames, height, width, num_channels)
).(batch_size, num_frames, height, width, num_channels)
.(batch_size, num_frames, num_channels, height, width)
.int
, optional, defaults to None
) —
The height in preprocessed frames of the video. If None
, will use the get_default_height_width()
to
get default height. int
, optional, defaults to
None) -- The width in preprocessed frames of the video. If
None, will use get_default_height_width()
to get
the default width. Preprocesses input video(s).
( video: Tensor output_type: str = 'np' )
Converts a video tensor to a list of frames for export.