AuraFlow is inspired by Stable Diffusion 3 and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the GenEval benchmark.
It was developed by the Fal team and more details about it can be found in this blog post.
AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out this section for more details.
( tokenizer: T5Tokenizer text_encoder: UMT5EncoderModel vae: AutoencoderKL transformer: AuraFlowTransformer2DModel scheduler: FlowMatchEulerDiscreteScheduler )
Parameters
T5TokenizerFast
) —
Tokenizer of class
T5Tokenizer. T5EncoderModel
) —
Frozen text-encoder. AuraFlow uses
T5, specifically the
EleutherAI/pile-t5-xl variant. transformer
to denoise the encoded image latents. ( prompt: Union = None negative_prompt: Union = None num_inference_steps: int = 50 timesteps: List = None sigmas: List = None guidance_scale: float = 3.5 num_images_per_prompt: Optional = 1 height: Optional = 1024 width: Optional = 1024 generator: Union = None latents: Optional = None prompt_embeds: Optional = None prompt_attention_mask: Optional = None negative_prompt_embeds: Optional = None negative_prompt_attention_mask: Optional = None max_sequence_length: int = 256 output_type: Optional = 'pil' return_dict: bool = True )
Parameters
str
or List[str]
, optional) —
The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
.
instead. str
or List[str]
, optional) —
The prompt or prompts not to guide the image generation. If not defined, one has to pass
negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is
less than 1
). int
, optional, defaults to self.transformer.config.sample_size * self.vae_scale_factor) —
The height in pixels of the generated image. This is set to 1024 by default for best results. int
, optional, defaults to self.transformer.config.sample_size * self.vae_scale_factor) —
The width in pixels of the generated image. This is set to 1024 by default for best results. int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. List[float]
, optional) —
Custom sigmas used to override the timestep spacing strategy of the scheduler. If sigmas
is passed,
num_inference_steps
and timesteps
must be None
. List[int]
, optional) —
Custom timesteps to use for the denoising process with schedulers which support a timesteps
argument
in their set_timesteps
method. If not defined, the default behavior when num_inference_steps
is
passed will be used. Must be in descending order. float
, optional, defaults to 5.0) —
Guidance scale as defined in Classifier-Free Diffusion Guidance.
guidance_scale
is defined as w
of equation 2. of Imagen
Paper. Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
,
usually at the expense of lower image quality. int
, optional, defaults to 1) —
The number of images to generate per prompt. torch.Generator
or List[torch.Generator]
, optional) —
One or a list of torch generator(s)
to make generation deterministic. torch.FloatTensor
, optional) —
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random generator
. torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.Tensor
, optional) —
Pre-generated attention mask for text embeddings. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input
argument. torch.Tensor
, optional) —
Pre-generated attention mask for negative text embeddings. str
, optional, defaults to "pil"
) —
The output format of the generate image. Choose between
PIL: PIL.Image.Image
or np.array
. bool
, optional, defaults to True
) —
Whether or not to return a ~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput
instead
of a plain tuple. int
defaults to 256) — Maximum sequence length to use with the prompt
. Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import AuraFlowPipeline
>>> pipe = AuraFlowPipeline.from_pretrained("fal/AuraFlow", torch_dtype=torch.float16)
>>> pipe = pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> image = pipe(prompt).images[0]
>>> image.save("aura_flow.png")
Returns: ImagePipelineOutput or tuple
:
If return_dict
is True
, ImagePipelineOutput is returned, otherwise a tuple
is returned
where the first element is a list with the generated images.
( prompt: Union negative_prompt: Union = None do_classifier_free_guidance: bool = True num_images_per_prompt: int = 1 device: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None prompt_attention_mask: Optional = None negative_prompt_attention_mask: Optional = None max_sequence_length: int = 256 )
Parameters
str
or List[str]
, optional) —
prompt to be encoded str
or List[str]
, optional) —
The prompt not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
). bool
, optional, defaults to True
) —
whether to use classifier free guidance or not int
, optional, defaults to 1) —
number of images that should be generated per prompt
device — (torch.device
, optional):
torch device to place the resulting embeddings on torch.Tensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.Tensor
, optional) —
Pre-generated attention mask for text embeddings. torch.Tensor
, optional) —
Pre-generated negative text embeddings. torch.Tensor
, optional) —
Pre-generated attention mask for negative text embeddings. int
, defaults to 256) — Maximum sequence length to use for the prompt. Encodes the prompt into text encoder hidden states.