The examples below provide a quick overview on the various features supported in setfit
. For more examples, check out the notebooks
folder.
setfit
is integrated with the Hugging Face Hub and provides two main classes:
SetFitModel
: a wrapper that combines a pretrained body from sentence_transformers
and a classification head from either scikit-learn
or SetFitHead
(a differentiable head built upon PyTorch
with similar APIs to sentence_transformers
).SetFitTrainer
: a helper class that wraps the fine-tuning process of SetFit.Here is an end-to-end example using a classification head from scikit-learn
:
from datasets import load_dataset
from sentence_transformers.losses import CosineSimilarityLoss
from setfit import SetFitModel, SetFitTrainer, sample_dataset
# Load a dataset from the Hugging Face Hub
dataset = load_dataset("sst2")
# Simulate the few-shot regime by sampling 8 examples per class
train_dataset = sample_dataset(dataset["train"], label_column="label", num_samples=8)
eval_dataset = dataset["validation"]
# Load a SetFit model from Hub
model = SetFitModel.from_pretrained("sentence-transformers/paraphrase-mpnet-base-v2")
# Create trainer
trainer = SetFitTrainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss_class=CosineSimilarityLoss,
metric="accuracy",
batch_size=16,
num_iterations=20, # The number of text pairs to generate for contrastive learning
num_epochs=1, # The number of epochs to use for contrastive learning
column_mapping={"sentence": "text", "label": "label"} # Map dataset columns to text/label expected by trainer
)
# Train and evaluate
trainer.train()
metrics = trainer.evaluate()
# Push model to the Hub
trainer.push_to_hub("my-awesome-setfit-model")
# Download from Hub and run inference
model = SetFitModel.from_pretrained("lewtun/my-awesome-setfit-model")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
Here is an end-to-end example using SetFitHead
:
from datasets import load_dataset
from sentence_transformers.losses import CosineSimilarityLoss
from setfit import SetFitModel, SetFitTrainer, sample_dataset
# Load a dataset from the Hugging Face Hub
dataset = load_dataset("sst2")
# Simulate the few-shot regime by sampling 8 examples per class
train_dataset = sample_dataset(dataset["train"], label_column="label", num_samples=8)
eval_dataset = dataset["validation"]
# Load a SetFit model from Hub
model = SetFitModel.from_pretrained(
"sentence-transformers/paraphrase-mpnet-base-v2",
use_differentiable_head=True,
head_params={"out_features": num_classes},
)
# Create trainer
trainer = SetFitTrainer(
model=model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss_class=CosineSimilarityLoss,
metric="accuracy",
batch_size=16,
num_iterations=20, # The number of text pairs to generate for contrastive learning
num_epochs=1, # The number of epochs to use for contrastive learning
column_mapping={"sentence": "text", "label": "label"} # Map dataset columns to text/label expected by trainer
)
# Train and evaluate
trainer.freeze() # Freeze the head
trainer.train() # Train only the body
# Unfreeze the head and freeze the body -> head-only training
trainer.unfreeze(keep_body_frozen=True)
# or
# Unfreeze the head and unfreeze the body -> end-to-end training
trainer.unfreeze(keep_body_frozen=False)
trainer.train(
num_epochs=25, # The number of epochs to train the head or the whole model (body and head)
batch_size=16,
body_learning_rate=1e-5, # The body's learning rate
learning_rate=1e-2, # The head's learning rate
l2_weight=0.0, # Weight decay on **both** the body and head. If `None`, will use 0.01.
)
metrics = trainer.evaluate()
# Push model to the Hub
trainer.push_to_hub("my-awesome-setfit-model")
# Download from Hub and run inference
model = SetFitModel.from_pretrained("lewtun/my-awesome-setfit-model")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
Based on our experiments, SetFitHead
can achieve similar performance as using a scikit-learn
head. We use AdamW
as the optimizer and scale down learning rates by 0.5 every 5 epochs. For more details about the experiments, please check out here. We recommend using a large learning rate (e.g. 1e-2
) for SetFitHead
and a small learning rate (e.g. 1e-5
) for the body in your first attempt.
To train SetFit models on multilabel datasets, specify the multi_target_strategy
argument when loading the pretrained model:
scikit-learn
:
from setfit import SetFitModel
model = SetFitModel.from_pretrained(
model_id,
multi_target_strategy="one-vs-rest",
)
This will initialise a multilabel classification head from sklearn
- the following options are available for multi_target_strategy
:
one-vs-rest
: uses a OneVsRestClassifier
head.multi-output
: uses a MultiOutputClassifier
head.classifier-chain
: uses a ClassifierChain
head.From here, you can instantiate a SetFitTrainer
using the same example above, and train it as usual.
SetFitHead
:
from setfit import SetFitModel
model = SetFitModel.from_pretrained(
model_id,
multi_target_strategy="one-vs-rest"
use_differentiable_head=True,
head_params={"out_features": num_classes},
)
Note: If you use the differentiable SetFitHead
classifier head, it will automatically use BCEWithLogitsLoss
for training. The prediction involves a sigmoid
after which probabilities are rounded to 1 or 0. Furthermore, the "one-vs-rest"
and "multi-output"
multi-target strategies are equivalent for the differentiable SetFitHead
.
SetFit can also be applied to scenarios where no labels are available. To do so, create a synthetic dataset of training examples:
from datasets import Dataset
from setfit import get_templated_dataset
candidate_labels = ["negative", "positive"]
train_dataset = get_templated_dataset(candidate_labels=candidate_labels, sample_size=8)
This will create examples of the form "This sentence is {}"
, where the {}
is filled in with one of the candidate labels. From here you can train a SetFit model as usual:
from setfit import SetFitModel, SetFitTrainer
model = SetFitModel.from_pretrained("sentence-transformers/paraphrase-mpnet-base-v2")
trainer = SetFitTrainer(
model=model,
train_dataset=train_dataset
)
trainer.train()
We find this approach typically outperforms the zero-shot pipeline in 🤗 Transformers (based on MNLI with Bart), while being 5x faster to generate predictions with.
SetFitTrainer
provides a hyperparameter_search()
method that you can use to find good hyperparameters for your data. To use this feature, first install the optuna
backend:
python -m pip install setfit[optuna]
To use this method, you need to define two functions:
model_init()
: A function that instantiates the model to be used. If provided, each call to train()
will start from a new instance of the model as given by this function.hp_space()
: A function that defines the hyperparameter search space.Here is an example of a model_init()
function that we’ll use to scan over the hyperparameters associated with the classification head in SetFitModel
:
from setfit import SetFitModel
def model_init(params):
params = params or {}
max_iter = params.get("max_iter", 100)
solver = params.get("solver", "liblinear")
params = {
"head_params": {
"max_iter": max_iter,
"solver": solver,
}
}
return SetFitModel.from_pretrained("sentence-transformers/paraphrase-albert-small-v2", **params)
Similarly, to scan over hyperparameters associated with the SetFit training process, we can define a hp_space()
function as follows:
def hp_space(trial): # Training parameters
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"num_epochs": trial.suggest_int("num_epochs", 1, 5),
"batch_size": trial.suggest_categorical("batch_size", [4, 8, 16, 32, 64]),
"seed": trial.suggest_int("seed", 1, 40),
"num_iterations": trial.suggest_categorical("num_iterations", [5, 10, 20]),
"max_iter": trial.suggest_int("max_iter", 50, 300),
"solver": trial.suggest_categorical("solver", ["newton-cg", "lbfgs", "liblinear"]),
}
Note: In practice, we found num_iterations
to be the most important hyperparameter for the contrastive learning process.
The next step is to instantiate a SetFitTrainer
and call hyperparameter_search()
:
from datasets import Dataset
from setfit import SetFitTrainer
dataset = Dataset.from_dict(
{"text_new": ["a", "b", "c"], "label_new": [0, 1, 2], "extra_column": ["d", "e", "f"]}
)
trainer = SetFitTrainer(
train_dataset=dataset,
eval_dataset=dataset,
model_init=model_init,
column_mapping={"text_new": "text", "label_new": "label"},
)
best_run = trainer.hyperparameter_search(direction="maximize", hp_space=hp_space, n_trials=20)
Finally, you can apply the hyperparameters you found to the trainer, and lock in the optimal model, before training for a final time.
trainer.apply_hyperparameters(best_run.hyperparameters, final_model=True)
trainer.train()
If you have access to unlabeled data, you can use knowledge distillation to compress a trained SetFit model into a smaller version. The result is a model that can run inference much faster, with little to no drop in accuracy. Here’s an end-to-end example (see our paper for more details):
from datasets import load_dataset
from sentence_transformers.losses import CosineSimilarityLoss
from setfit import SetFitModel, SetFitTrainer, DistillationSetFitTrainer, sample_dataset
# Load a dataset from the Hugging Face Hub
dataset = load_dataset("ag_news")
# Create a sample few-shot dataset to train the teacher model
train_dataset_teacher = sample_dataset(dataset["train"], label_column="label", num_samples=16)
# Create a dataset of unlabeled examples to train the student
train_dataset_student = dataset["train"].shuffle(seed=0).select(range(500))
# Dataset for evaluation
eval_dataset = dataset["test"]
# Load teacher model
teacher_model = SetFitModel.from_pretrained(
"sentence-transformers/paraphrase-mpnet-base-v2"
)
# Create trainer for teacher model
teacher_trainer = SetFitTrainer(
model=teacher_model,
train_dataset=train_dataset_teacher,
eval_dataset=eval_dataset,
loss_class=CosineSimilarityLoss,
)
# Train teacher model
teacher_trainer.train()
# Load small student model
student_model = SetFitModel.from_pretrained("paraphrase-MiniLM-L3-v2")
# Create trainer for knowledge distillation
student_trainer = DistillationSetFitTrainer(
teacher_model=teacher_model,
train_dataset=train_dataset_student,
student_model=student_model,
eval_dataset=eval_dataset,
loss_class=CosineSimilarityLoss,
metric="accuracy",
batch_size=16,
num_iterations=20,
num_epochs=1,
)
# Train student with knowledge distillation
student_trainer.train()