The VaeImageProcessor
provides a unified API for StableDiffusionPipeline’s to prepare image inputs for VAE encoding and post-processing outputs once they’re decoded. This includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays.
All pipelines with VaeImageProcessor
accepts PIL Image, PyTorch tensor, or NumPy arrays as image inputs and returns outputs based on the output_type
argument by the user. You can pass encoded image latents directly to the pipeline and return latents from the pipeline as a specific output with the output_type
argument (for example output_type="pt"
). This allows you to take the generated latents from one pipeline and pass it to another pipeline as input without leaving the latent space. It also makes it much easier to use multiple pipelines together by passing PyTorch tensors directly between different pipelines.
( do_resize: bool = True vae_scale_factor: int = 8 resample: str = 'lanczos' do_normalize: bool = True do_convert_rgb: bool = False )
Parameters
bool
, optional, defaults to True
) —
Whether to downscale the image’s (height, width) dimensions to multiples of vae_scale_factor
. Can accept
height
and width
arguments from image_processor.VaeImageProcessor.preprocess() method.
int
, optional, defaults to 8
) —
VAE scale factor. If do_resize
is True
, the image is automatically resized to multiples of this factor.
str
, optional, defaults to lanczos
) —
Resampling filter to use when resizing the image.
bool
, optional, defaults to True
) —
Whether to normalize the image to [-1,1].
bool
, optional, defaults to be False
) —
Whether to convert the images to RGB format.
Image processor for VAE.
Converts an image to RGB format.
Denormalize an image array to [0,1].
Normalize an image array to [-1,1].
Convert a numpy image or a batch of images to a PIL image.
Convert a NumPy image to a PyTorch tensor.
Convert a PIL image or a list of PIL images to NumPy arrays.
( image: typing.Union[torch.FloatTensor, PIL.Image.Image, numpy.ndarray] height: typing.Optional[int] = None width: typing.Optional[int] = None )
Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
Convert a PyTorch tensor to a NumPy image.
( image: Image height: typing.Optional[int] = None width: typing.Optional[int] = None )
Resize a PIL image. Both height and width are downscaled to the next integer multiple of vae_scale_factor
.
The VaeImageProcessorLDM3D
accepts RGB and depth inputs and returns RGB and depth outputs.
( do_resize: bool = True vae_scale_factor: int = 8 resample: str = 'lanczos' do_normalize: bool = True )
Parameters
bool
, optional, defaults to True
) —
Whether to downscale the image’s (height, width) dimensions to multiples of vae_scale_factor
.
int
, optional, defaults to 8
) —
VAE scale factor. If do_resize
is True
, the image is automatically resized to multiples of this factor.
str
, optional, defaults to lanczos
) —
Resampling filter to use when resizing the image.
bool
, optional, defaults to True
) —
Whether to normalize the image to [-1,1].
Image processor for VAE LDM3D.
Convert a NumPy depth image or a batch of images to a PIL image.
Convert a NumPy image or a batch of images to a PIL image.
Returns: depth map