AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning by Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai.
The abstract of the paper is the following:
With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at this https URL.
Pipeline | Tasks | Demo |
---|---|---|
AnimateDiffPipeline | Text-to-Video Generation with AnimateDiff | |
AnimateDiffVideoToVideoPipeline | Video-to-Video Generation with AnimateDiff |
Motion Adapter checkpoints can be found under guoyww. These checkpoints are meant to work with any model based on Stable Diffusion 1.4/1.5.
AnimateDiff works with a MotionAdapter checkpoint and a Stable Diffusion model checkpoint. The MotionAdapter is a collection of Motion Modules that are responsible for adding coherent motion across image frames. These modules are applied after the Resnet and Attention blocks in Stable Diffusion UNet.
The following example demonstrates how to use a MotionAdapter checkpoint with Diffusers for inference based on StableDiffusion-1.4/1.5.
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
Here are some sample outputs:
![]() |
AnimateDiff tends to work better with finetuned Stable Diffusion models. If you plan on using a scheduler that can clip samples, make sure to disable it by setting clip_sample=False
in the scheduler as this can also have an adverse effect on generated samples. Additionally, the AnimateDiff checkpoints can be sensitive to the beta schedule of the scheduler. We recommend setting this to linear
.
AnimateDiff can also be used to generate visually similar videos or enable style/character/background or other edits starting from an initial video, allowing you to seamlessly explore creative possibilities.
import imageio
import requests
import torch
from diffusers import AnimateDiffVideoToVideoPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from io import BytesIO
from PIL import Image
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to("cuda")
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
# helper function to load videos
def load_video(file_path: str):
images = []
if file_path.startswith(('http://', 'https://')):
# If the file_path is a URL
response = requests.get(file_path)
response.raise_for_status()
content = BytesIO(response.content)
vid = imageio.get_reader(content)
else:
# Assuming it's a local file path
vid = imageio.get_reader(file_path)
for frame in vid:
pil_image = Image.fromarray(frame)
images.append(pil_image)
return images
video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
output = pipe(
video = video,
prompt="panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
guidance_scale=7.5,
num_inference_steps=25,
strength=0.5,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
Here are some sample outputs:
Source Video | Output Video |
---|---|
raccoon playing a guitar
![]() | panda playing a guitar
![]() |
closeup of margot robbie, fireworks in the background, high quality
![]() | closeup of tony stark, robert downey jr, fireworks
![]() |
Motion LoRAs are a collection of LoRAs that work with the guoyww/animatediff-motion-adapter-v1-5-2
checkpoint. These LoRAs are responsible for adding specific types of motion to the animations.
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
pipe.load_lora_weights(
"guoyww/animatediff-motion-lora-zoom-out", adapter_name="zoom-out"
)
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
beta_schedule="linear",
timestep_spacing="linspace",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
![]() |
You can also leverage the PEFT backend to combine Motion LoRA’s and create more complex animations.
First install PEFT with
pip install peft
Then you can use the following code to combine Motion LoRAs.
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
# Load the motion adapter
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
# load SD 1.5 based finetuned model
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
pipe.load_lora_weights(
"diffusers/animatediff-motion-lora-zoom-out", adapter_name="zoom-out",
)
pipe.load_lora_weights(
"diffusers/animatediff-motion-lora-pan-left", adapter_name="pan-left",
)
pipe.set_adapters(["zoom-out", "pan-left"], adapter_weights=[1.0, 1.0])
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe.scheduler = scheduler
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_model_cpu_offload()
output = pipe(
prompt=(
"masterpiece, bestquality, highlydetailed, ultradetailed, sunset, "
"orange sky, warm lighting, fishing boats, ocean waves seagulls, "
"rippling water, wharf, silhouette, serene atmosphere, dusk, evening glow, "
"golden hour, coastal landscape, seaside scenery"
),
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=25,
generator=torch.Generator("cpu").manual_seed(42),
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
![]() |
FreeInit: Bridging Initialization Gap in Video Diffusion Models by Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, Ziwei Liu.
FreeInit is an effective method that improves temporal consistency and overall quality of videos generated using video-diffusion-models without any addition training. It can be applied to AnimateDiff, ModelScope, VideoCrafter and various other video generation models seamlessly at inference time, and works by iteratively refining the latent-initialization noise. More details can be found it the paper.
The following example demonstrates the usage of FreeInit.
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
beta_schedule="linear",
clip_sample=False,
timestep_spacing="linspace",
steps_offset=1
)
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
# enable FreeInit
# Refer to the enable_free_init documentation for a full list of configurable parameters
pipe.enable_free_init(method="butterworth", use_fast_sampling=True)
# run inference
output = pipe(
prompt="a panda playing a guitar, on a boat, in the ocean, high quality",
negative_prompt="bad quality, worse quality",
num_frames=16,
guidance_scale=7.5,
num_inference_steps=20,
generator=torch.Generator("cpu").manual_seed(666),
)
# disable FreeInit
pipe.disable_free_init()
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
FreeInit is not really free - the improved quality comes at the cost of extra computation. It requires sampling a few extra times depending on the num_iters
parameter that is set when enabling it. Setting the use_fast_sampling
parameter to True
can improve the overall performance (at the cost of lower quality compared to when use_fast_sampling=False
but still better results than vanilla video generation models).
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel motion_adapter: MotionAdapter scheduler: Union feature_extractor: CLIPImageProcessor = None image_encoder: CLIPVisionModelWithProjection = None )
Parameters
CLIPTextModel
) —
Frozen text-encoder (clip-vit-large-patch14). CLIPTokenizer
) —
A CLIPTokenizer to tokenize text. MotionAdapter
) —
A MotionAdapter
to be used in combination with unet
to denoise the encoded video latents. unet
to denoise the encoded image latents. Can be one of
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. Pipeline for text-to-video generation.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
( prompt: Union = None num_frames: Optional = 16 height: Optional = None width: Optional = None num_inference_steps: int = 50 guidance_scale: float = 7.5 negative_prompt: Union = None num_videos_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None ip_adapter_image: Union = None output_type: Optional = 'pil' return_dict: bool = True cross_attention_kwargs: Optional = None clip_skip: Optional = None callback_on_step_end: Optional = None callback_on_step_end_tensor_inputs: List = ['latents'] **kwargs ) → TextToVideoSDPipelineOutput or tuple
Parameters
str
or List[str]
, optional) —
The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The height in pixels of the generated video. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The width in pixels of the generated video. int
, optional, defaults to 16) —
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video. int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference. float
, optional, defaults to 7.5) —
A higher guidance scale value encourages the model to generate images closely linked to the text
prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
. str
or List[str]
, optional) —
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
). float
, optional, defaults to 0.0) —
Corresponds to parameter eta (η) from the DDIM paper. Only applies
to the DDIMScheduler, and is ignored in other schedulers. torch.Generator
or List[torch.Generator]
, optional) —
A torch.Generator
to make
generation deterministic. torch.FloatTensor
, optional) —
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random generator
. Latents should be of shape
(batch_size, num_channel, num_frames, height, width)
. torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
ip_adapter_image — (PipelineImageInput
, optional):
Optional image input to work with IP Adapters. str
, optional, defaults to "pil"
) —
The output format of the generated video. Choose between torch.FloatTensor
, PIL.Image
or
np.array
. bool
, optional, defaults to True
) —
Whether or not to return a TextToVideoSDPipelineOutput instead
of a plain tuple. dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in
self.processor
. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Callable
, optional) —
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
. callback_kwargs
will include a list of all tensors as specified by
callback_on_step_end_tensor_inputs
. List
, optional) —
The list of tensor inputs for the callback_on_step_end
function. The tensors specified in the list
will be passed as callback_kwargs
argument. You will only be able to include variables listed in the
._callback_tensor_inputs
attribute of your pipeine class. Returns
TextToVideoSDPipelineOutput or tuple
If return_dict
is True
, TextToVideoSDPipelineOutput is
returned, otherwise a tuple
is returned where the first element is a list with the generated frames.
The call function to the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import MotionAdapter, AnimateDiffPipeline, DDIMScheduler
>>> from diffusers.utils import export_to_gif
>>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
>>> pipe = AnimateDiffPipeline.from_pretrained("frankjoshua/toonyou_beta6", motion_adapter=adapter)
>>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False)
>>> output = pipe(prompt="A corgi walking in the park")
>>> frames = output.frames[0]
>>> export_to_gif(frames, "animation.gif")
Disables the FreeInit mechanism if enabled.
Disables the FreeU mechanism if enabled.
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
( num_iters: int = 3 use_fast_sampling: bool = False method: str = 'butterworth' order: int = 4 spatial_stop_frequency: float = 0.25 temporal_stop_frequency: float = 0.25 generator: Generator = None )
Parameters
int
, optional, defaults to 3
) —
Number of FreeInit noise re-initialization iterations. bool
, optional, defaults to False
) —
Whether or not to speedup sampling procedure at the cost of probably lower quality results. Enables
the “Coarse-to-Fine Sampling” strategy, as mentioned in the paper, if set to True
. str
, optional, defaults to butterworth
) —
Must be one of butterworth
, ideal
or gaussian
to use as the filtering method for the
FreeInit low pass filter. int
, optional, defaults to 4
) —
Order of the filter used in butterworth
method. Larger values lead to ideal
method behaviour
whereas lower values lead to gaussian
method behaviour. float
, optional, defaults to 0.25
) —
Normalized stop frequency for spatial dimensions. Must be between 0 to 1. Referred to as d_s
in
the original implementation. float
, optional, defaults to 0.25
) —
Normalized stop frequency for temporal dimensions. Must be between 0 to 1. Referred to as d_t
in
the original implementation. torch.Generator
, optional, defaults to 0.25
) —
A torch.Generator
to make
FreeInit generation deterministic. Enables the FreeInit mechanism as in https://arxiv.org/abs/2312.07537.
This implementation has been adapted from the official repository.
( s1: float s2: float b1: float b2: float )
Parameters
float
) —
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) —
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) — Scaling factor for stage 1 to amplify the contributions of backbone features. float
) — Scaling factor for stage 2 to amplify the contributions of backbone features. Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the official repository for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None lora_scale: Optional = None clip_skip: Optional = None )
Parameters
str
or List[str]
, optional) —
prompt to be encoded
device — (torch.device
):
torch device int
) —
number of images that should be generated per prompt bool
) —
whether to use classifier free guidance or not str
or List[str]
, optional) —
The prompt or prompts not to guide the image generation. If not defined, one has to pass
negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is
less than 1
). torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input
argument. float
, optional) —
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Encodes the prompt into text encoder hidden states.
( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet2DConditionModel motion_adapter: MotionAdapter scheduler: Union feature_extractor: CLIPImageProcessor = None image_encoder: CLIPVisionModelWithProjection = None )
Parameters
CLIPTextModel
) —
Frozen text-encoder (clip-vit-large-patch14). CLIPTokenizer
) —
A CLIPTokenizer to tokenize text. MotionAdapter
) —
A MotionAdapter
to be used in combination with unet
to denoise the encoded video latents. unet
to denoise the encoded image latents. Can be one of
DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler. Pipeline for video-to-video generation.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
( video: List = None prompt: Union = None height: Optional = None width: Optional = None num_inference_steps: int = 50 timesteps: Optional = None guidance_scale: float = 7.5 strength: float = 0.8 negative_prompt: Union = None num_videos_per_prompt: Optional = 1 eta: float = 0.0 generator: Union = None latents: Optional = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None ip_adapter_image: Union = None output_type: Optional = 'pil' return_dict: bool = True cross_attention_kwargs: Optional = None clip_skip: Optional = None callback_on_step_end: Optional = None callback_on_step_end_tensor_inputs: List = ['latents'] ) → AnimateDiffPipelineOutput
or tuple
Parameters
List[PipelineImageInput]
) —
The input video to condition the generation on. Must be a list of images/frames of the video. str
or List[str]
, optional) —
The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The height in pixels of the generated video. int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) —
The width in pixels of the generated video. int
, optional, defaults to 50) —
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference. float
, optional, defaults to 0.8) —
Higher strength leads to more differences between original video and generated video. float
, optional, defaults to 7.5) —
A higher guidance scale value encourages the model to generate images closely linked to the text
prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
. str
or List[str]
, optional) —
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
). float
, optional, defaults to 0.0) —
Corresponds to parameter eta (η) from the DDIM paper. Only applies
to the DDIMScheduler, and is ignored in other schedulers. torch.Generator
or List[torch.Generator]
, optional) —
A torch.Generator
to make
generation deterministic. torch.FloatTensor
, optional) —
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random generator
. Latents should be of shape
(batch_size, num_channel, num_frames, height, width)
. torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
ip_adapter_image — (PipelineImageInput
, optional):
Optional image input to work with IP Adapters. str
, optional, defaults to "pil"
) —
The output format of the generated video. Choose between torch.FloatTensor
, PIL.Image
or
np.array
. bool
, optional, defaults to True
) —
Whether or not to return a AnimateDiffPipelineOutput
instead
of a plain tuple. dict
, optional) —
A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in
self.processor
. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Callable
, optional) —
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
. callback_kwargs
will include a list of all tensors as specified by
callback_on_step_end_tensor_inputs
. List
, optional) —
The list of tensor inputs for the callback_on_step_end
function. The tensors specified in the list
will be passed as callback_kwargs
argument. You will only be able to include variables listed in the
._callback_tensor_inputs
attribute of your pipeine class. Returns
AnimateDiffPipelineOutput
or tuple
If return_dict
is True
, AnimateDiffPipelineOutput
is
returned, otherwise a tuple
is returned where the first element is a list with the generated frames.
The call function to the pipeline for generation.
Examples:
Disables the FreeU mechanism if enabled.
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
( s1: float s2: float b1: float b2: float )
Parameters
float
) —
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) —
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate “oversmoothing effect” in the enhanced denoising process. float
) — Scaling factor for stage 1 to amplify the contributions of backbone features. float
) — Scaling factor for stage 2 to amplify the contributions of backbone features. Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the official repository for combinations of the values that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: Optional = None negative_prompt_embeds: Optional = None lora_scale: Optional = None clip_skip: Optional = None )
Parameters
str
or List[str]
, optional) —
prompt to be encoded
device — (torch.device
):
torch device int
) —
number of images that should be generated per prompt bool
) —
whether to use classifier free guidance or not str
or List[str]
, optional) —
The prompt or prompts not to guide the image generation. If not defined, one has to pass
negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is
less than 1
). torch.FloatTensor
, optional) —
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from prompt
input argument. torch.FloatTensor
, optional) —
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input
argument. float
, optional) —
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. int
, optional) —
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings. Encodes the prompt into text encoder hidden states.
( frames: Union )
Output class for AnimateDiff pipelines.