The PhiMoE model was proposed in Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone by Microsoft.
The abstract from the Phi-3 paper is the following:
We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. Our training dataset is a scaled-up version of the one used for phi-2, composed of heavily filtered publicly available web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide parameter-scaling results with a 7B, 14B models trained for 4.8T tokens, called phi-3-small, phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75%, 78% on MMLU, and 8.7, 8.9 on MT-bench). To enhance multilingual, multimodal, and long-context capabilities, we introduce three models in the phi-3.5 series: phi-3.5-mini, phi-3.5-MoE, and phi-3.5-Vision. The phi-3.5-MoE, a 16 x 3.8B MoE model with 6.6 billion active parameters, achieves superior performance in language reasoning, math, and code tasks compared to other open-source models of similar scale, such as Llama 3.1 and the Mixtral series, and on par with Gemini-1.5-Flash and GPT-4o-mini. Meanwhile, phi-3.5-Vision, a 4.2 billion parameter model derived from phi-3.5-mini, excels in reasoning tasks and is adept at handling both single-image and text prompts, as well as multi-image and text prompts.
The original code for PhiMoE can be found here.
Mixtral
with the main difference of Phi3LongRoPEScaledRotaryEmbedding
, where they are used to extend the context of the rotary embeddings. The query, key and values are fused, and the MLP’s up and gate projection layers are also fused.Phi-3.5-MoE-instruct has been integrated in the development version (4.44.2.dev) of transformers
. Until the official version is released through pip
, ensure that you are doing the following:
trust_remote_code=True
is passed as an argument of the from_pretrained()
function.The current transformers
version can be verified with: pip list | grep transformers
.
Examples of required packages:
flash_attn==2.5.8
torch==2.3.1
accelerate==0.31.0
transformers==4.43.0
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3.5-MoE-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
( vocab_size = 32064 hidden_size = 4096 intermediate_size = 6400 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = 8 hidden_act = 'silu' max_position_embeddings = 131072 initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False rope_theta = 1000000.0 rope_scaling = None sliding_window = None attention_dropout = 0.0 num_experts_per_tok = 2 num_local_experts = 16 output_router_logits = False router_aux_loss_coef = 0.001 router_jitter_noise = 0.01 input_jitter_noise = 0.0 attention_bias = False lm_head_bias = False **kwargs )
Parameters
int
, optional, defaults to 32064) —
Vocabulary size of the Phimoe model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling PhimoeModel int
, optional, defaults to 4096) —
Dimension of the hidden representations. int
, optional, defaults to 6400) —
Dimension of the MLP representations. int
, optional, defaults to 32) —
Number of hidden layers in the Transformer encoder. int
, optional, defaults to 32) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 8) —
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
num_key_value_heads=num_attention_heads
, the model will use Multi Head Attention (MHA), if
num_key_value_heads=1
the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout this
paper. If it is not specified, will default to 8
. str
or function
, optional, defaults to "silu"
) —
The non-linear activation function (function or string) in the decoder. int
, optional, defaults to 4096*32
) —
The maximum sequence length that this model might ever be used with. Mixtral’s sliding window attention
allows sequence of up to 4096*32 tokens. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 1e-05) —
The epsilon used by the rms normalization layers. bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if config.is_decoder=True
. int
, optional) —
The id of the padding token. int
, optional, defaults to 1) —
The id of the “beginning-of-sequence” token. int
, optional, defaults to 2) —
The id of the “end-of-sequence” token. bool
, optional, defaults to False
) —
Whether the model’s input and output word embeddings should be tied. float
, optional, defaults to 1000000.0) —
The base period of the RoPE embeddings. dict
, optional) —
The scaling strategy for the RoPE embeddings. If None
, no scaling is applied. If a dictionary, it must
contain the following keys: type
, short_factor
, long_factor
, short_mscale
, long_mscale
and
original_max_position_embeddings
. The type
must be longrope
, the short_mscale
and long_scale
must
be numbers, the short_factor
and long_factor
must be lists of numbers with the same length as half of
the attention head size and the original_max_position_embeddings
must be an integer. int
, optional) —
Sliding window attention window size. If not specified, will default to 262144
. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. int
, optional, defaults to 2) —
The number of experts to root per-token, can be also interpreted as the top-p
routing
parameter int
, optional, defaults to 16) —
Number of experts per Sparse MLP layer. bool
, optional, defaults to False
) —
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss. See here for more details float
, optional, defaults to 0.001) —
The aux loss factor for the total loss. float
, optional, defaults to 0.01) —
Amount of noise to add to the router. float
, optional, defaults to 0.0) — Input jitter noise bool
, optional, defaults to False
) — Attention bias bool
, optional, defaults to False
) — LM head bias This is the configuration class to store the configuration of a PhimoeModel. It is used to instantiate a Phi-moe model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the microsoft/Phi-3.5-MoE-instruct. Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import PhimoeModel, PhimoeConfig
>>> # Initializing a Phi-3 style configuration
>>> configuration = PhimoeConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> # Initializing a model from the configuration
>>> model = PhimoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( config: PhimoeConfig )
Parameters
The bare Phimoe Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a PhimoeDecoderLayer
( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (sequence_length)
, optional) —
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids
,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length. The PhimoeModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None output_router_logits: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None num_logits_to_keep: int = 0 **loss_kwargs ) → transformers.modeling_outputs.MoeCausalLMOutputWithPast
or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (sequence_length)
, optional) —
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids
,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length. torch.LongTensor
of shape (batch_size, sequence_length)
, optional):
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
num_logits_to_keep (int
, optional):
Calculate logits for the last num_logits_to_keep
tokens. If 0
, calculate logits for all
input_ids
(special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns
transformers.modeling_outputs.MoeCausalLMOutputWithPast
or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MoeCausalLMOutputWithPast
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (PhimoeConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
aux_loss (torch.FloatTensor
, optional, returned when labels
is provided) — aux_loss for the sparse modules.
router_logits (tuple(torch.FloatTensor)
, optional, returned when output_router_probs=True
and config.add_router_probs=True
is passed or when config.output_router_probs=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, sequence_length, num_experts)
.
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary loss for Mixture of Experts models.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The PhimoeForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, PhimoeForCausalLM
>>> model = PhimoeForCausalLM.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
( inputs: typing.Optional[torch.Tensor] = None generation_config: typing.Optional[transformers.generation.configuration_utils.GenerationConfig] = None logits_processor: typing.Optional[transformers.generation.logits_process.LogitsProcessorList] = None stopping_criteria: typing.Optional[transformers.generation.stopping_criteria.StoppingCriteriaList] = None prefix_allowed_tokens_fn: typing.Optional[typing.Callable[[int, torch.Tensor], typing.List[int]]] = None synced_gpus: typing.Optional[bool] = None assistant_model: typing.Optional[ForwardRef('PreTrainedModel')] = None streamer: typing.Optional[ForwardRef('BaseStreamer')] = None negative_prompt_ids: typing.Optional[torch.Tensor] = None negative_prompt_attention_mask: typing.Optional[torch.Tensor] = None **kwargs ) → ModelOutput or torch.LongTensor
Parameters
torch.Tensor
of varying shape depending on the modality, optional) —
The sequence used as a prompt for the generation or as model inputs to the encoder. If None
the
method initializes it with bos_token_id
and a batch size of 1. For decoder-only models inputs
should be in the format of input_ids
. For encoder-decoder models inputs can represent any of
input_ids
, input_values
, input_features
, or pixel_values
. **kwargs
passed to generate matching the attributes of generation_config
will override them. If
generation_config
is not provided, the default will be used, which has the following loading
priority: 1) from the generation_config.json
model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit GenerationConfig’s
default values, whose documentation should be checked to parameterize generation. LogitsProcessorList
, optional) —
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users. StoppingCriteriaList
, optional) —
Custom stopping criteria that complements the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. If your stopping criteria depends on the scores
input, make
sure you pass return_dict_in_generate=True, output_scores=True
to generate
. This feature is
intended for advanced users. Callable[[int, torch.Tensor], List[int]]
, optional) —
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID batch_id
and
input_ids
. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID batch_id
and the previously generated tokens inputs_ids
. This argument is useful
for constrained generation conditioned on the prefix, as described in Autoregressive Entity
Retrieval. bool
, optional) —
Whether to continue running the while loop until max_length. Unless overridden, this flag will be set
to True
if using FullyShardedDataParallel
or DeepSpeed ZeRO Stage 3 with multiple GPUs to avoid
deadlocking if one GPU finishes generating before other GPUs. Otherwise, defaults to False
. PreTrainedModel
, optional) —
An assistant model that can be used to accelerate generation. The assistant model must have the exact
same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistant model
is much faster than running generation with the model you’re calling generate from. As such, the
assistant model should be much smaller. BaseStreamer
, optional) —
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through streamer.put(token_ids)
and the streamer is responsible for any further processing. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
The negative prompt needed for some processors such as CFG. The batch size must match the input batch
size. This is an experimental feature, subject to breaking API changes in future versions. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Attention_mask for negative_prompt_ids
. Dict[str, Any]
, optional) —
Ad hoc parametrization of generation_config
and/or additional model-specific kwargs that will be
forwarded to the forward
function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with decoder_. Returns
ModelOutput or torch.LongTensor
A ModelOutput (if return_dict_in_generate=True
or when config.return_dict_in_generate=True
) or a torch.LongTensor
.
If the model is not an encoder-decoder model (model.config.is_encoder_decoder=False
), the possible
ModelOutput types are:
If the model is an encoder-decoder model (model.config.is_encoder_decoder=True
), the possible
ModelOutput types are:
Generates sequences of token ids for models with a language modeling head.
Most generation-controlling parameters are set in generation_config
which, if not passed, will be set to the
model’s default generation configuration. You can override any generation_config
by passing the corresponding
parameters to generate(), e.g. .generate(inputs, num_beams=4, do_sample=True)
.
For an overview of generation strategies and code examples, check out the following guide.
( config )
Parameters
The Phimoe Model transformer with a sequence classification head on top (linear layer).
PhimoeForSequenceClassification uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
pad_token_id
is defined in the configuration, it finds the last token that is not a padding token in each row. If
no pad_token_id
is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when inputs_embeds
are passed instead of input_ids
, it does the same (take the last value in
each row of the batch).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
If you want to change padding behavior, you should read modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more
information on the default strategy.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1]
.
tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (sequence_length)
, optional) —
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids
,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If
config.num_labels > 1
a classification loss is computed (Cross-Entropy). The PhimoeForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.