Quickstart with Python AutoTrain is a library that allows you to train state of the art models on Hugging Face Spaces, or locally.
It provides a simple and easy-to-use interface to train models for various tasks like llm finetuning, text classification,
image classification, object detection, and more.
In this quickstart guide, we will show you how to train a model using AutoTrain in Python.
Getting Started AutoTrain can be installed using pip:
$ pip install autotrain-advanced The example code below shows how to finetune an LLM model using AutoTrain in Python:
import os
from autotrain.params import LLMTrainingParams
from autotrain.project import AutoTrainProject
params = LLMTrainingParams(
model="meta-llama/Llama-3.2-1B-Instruct" ,
data_path="HuggingFaceH4/no_robots" ,
chat_template="tokenizer" ,
text_column="messages" ,
train_split="train" ,
trainer="sft" ,
epochs=3 ,
batch_size=1 ,
lr=1e-5 ,
peft=True ,
quantization="int4" ,
target_modules="all-linear" ,
padding="right" ,
optimizer="paged_adamw_8bit" ,
scheduler="cosine" ,
gradient_accumulation=8 ,
mixed_precision="bf16" ,
merge_adapter=True ,
project_name="autotrain-llama32-1b-finetune" ,
log="tensorboard" ,
push_to_hub=True ,
username=os.environ.get("HF_USERNAME" ),
token=os.environ.get("HF_TOKEN" ),
)
backend = "local"
project = AutoTrainProject(params=params, backend=backend, process=True )
project.create() In this example, we are finetuning the meta-llama/Llama-3.2-1B-Instruct
model on the HuggingFaceH4/no_robots
dataset.
We are training the model for 3 epochs with a batch size of 1 and a learning rate of 1e-5
.
We are using the paged_adamw_8bit
optimizer and the cosine
scheduler.
We are also using mixed precision training with a gradient accumulation of 8.
The final model will be pushed to the Hugging Face Hub after training.
To train the model, run the following command:
$ export HF_USERNAME=<your-hf-username>
$ export HF_TOKEN=<your-hf-write-token>
$ python train.py This will create a new project directory with the name autotrain-llama32-1b-finetune
and start the training process.
Once the training is complete, the model will be pushed to the Hugging Face Hub.
Your HF_TOKEN and HF_USERNAME are only required if you want to push the model or if you are accessing a gated model or dataset.
AutoTrainProject Class class autotrain.project. AutoTrainProject < source > ( params: typing.Union[autotrain.trainers.clm.params.LLMTrainingParams, autotrain.trainers.text_classification.params.TextClassificationParams, autotrain.trainers.tabular.params.TabularParams, autotrain.trainers.seq2seq.params.Seq2SeqParams, autotrain.trainers.image_classification.params.ImageClassificationParams, autotrain.trainers.text_regression.params.TextRegressionParams, autotrain.trainers.object_detection.params.ObjectDetectionParams, autotrain.trainers.token_classification.params.TokenClassificationParams, autotrain.trainers.sent_transformers.params.SentenceTransformersParams, autotrain.trainers.image_regression.params.ImageRegressionParams, autotrain.trainers.extractive_question_answering.params.ExtractiveQuestionAnsweringParams, autotrain.trainers.vlm.params.VLMTrainingParams] backend: str process: bool = False )
A class to train an AutoTrain project
Attributes params : Union[
LLMTrainingParams,
TextClassificationParams,
TabularParams,
Seq2SeqParams,
ImageClassificationParams,
TextRegressionParams,
ObjectDetectionParams,
TokenClassificationParams,
SentenceTransformersParams,
ImageRegressionParams,
ExtractiveQuestionAnsweringParams,
VLMTrainingParams,
]
The parameters for the AutoTrain project.
backend : str
The backend to be used for the AutoTrain project. It should be one of the following:
local spaces-a10g-large spaces-a10g-small spaces-a100-large spaces-t4-medium spaces-t4-small spaces-cpu-upgrade spaces-cpu-basic spaces-l4x1 spaces-l4x4 spaces-l40sx1 spaces-l40sx4 spaces-l40sx8 spaces-a10g-largex2 spaces-a10g-largex4
process : bool
Flag to indicate if the params and dataset should be processed. If your data format is not AutoTrain-readable, set it to True. Set it to True when in doubt. Defaults to False. Methods post_init ():
Validates the backend attribute.
create():
Creates a runner based on the backend and initializes the AutoTrain project.
Parameters Text Tasks class autotrain.trainers.clm.params. LLMTrainingParams < source > ( model: str = 'gpt2' project_name: str = 'project-name' data_path: str = 'data' train_split: str = 'train' valid_split: typing.Optional[str] = None add_eos_token: bool = True block_size: typing.Union[int, typing.List[int]] = -1 model_max_length: int = 2048 padding: typing.Optional[str] = 'right' trainer: str = 'default' use_flash_attention_2: bool = False log: str = 'none' disable_gradient_checkpointing: bool = False logging_steps: int = -1 eval_strategy: str = 'epoch' save_total_limit: int = 1 auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None lr: float = 3e-05 epochs: int = 1 batch_size: int = 2 warmup_ratio: float = 0.1 gradient_accumulation: int = 4 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 chat_template: typing.Optional[str] = None quantization: typing.Optional[str] = 'int4' target_modules: typing.Optional[str] = 'all-linear' merge_adapter: bool = False peft: bool = False lora_r: int = 16 lora_alpha: int = 32 lora_dropout: float = 0.05 model_ref: typing.Optional[str] = None dpo_beta: float = 0.1 max_prompt_length: int = 128 max_completion_length: typing.Optional[int] = None prompt_text_column: typing.Optional[str] = None text_column: str = 'text' rejected_text_column: typing.Optional[str] = None push_to_hub: bool = False username: typing.Optional[str] = None token: typing.Optional[str] = None unsloth: bool = False distributed_backend: typing.Optional[str] = None )
Parameters
model (str) — Model name to be used for training. Default is “gpt2”. project_name (str) — Name of the project and output directory. Default is “project-name”. data_path (str) — Path to the dataset. Default is “data”. train_split (str) — Configuration for the training data split. Default is “train”. valid_split (Optional[str]) — Configuration for the validation data split. Default is None. add_eos_token (bool) — Whether to add an EOS token at the end of sequences. Default is True. block_size (Union[int, List[int]]) — Size of the blocks for training, can be a single integer or a list of integers. Default is -1. model_max_length (int) — Maximum length of the model input. Default is 2048. padding (Optional[str]) — Side on which to pad sequences (left or right). Default is “right”. trainer (str) — Type of trainer to use. Default is “default”. use_flash_attention_2 (bool) — Whether to use flash attention version 2. Default is False. log (str) — Logging method for experiment tracking. Default is “none”. disable_gradient_checkpointing (bool) — Whether to disable gradient checkpointing. Default is False. logging_steps (int) — Number of steps between logging events. Default is -1. eval_strategy (str) — Strategy for evaluation (e.g., ‘epoch’). Default is “epoch”. save_total_limit (int) — Maximum number of checkpoints to keep. Default is 1. auto_find_batch_size (bool) — Whether to automatically find the optimal batch size. Default is False. mixed_precision (Optional[str]) — Type of mixed precision to use (e.g., ‘fp16’, ‘bf16’, or None). Default is None. lr (float) — Learning rate for training. Default is 3e-5. epochs (int) — Number of training epochs. Default is 1. batch_size (int) — Batch size for training. Default is 2. warmup_ratio (float) — Proportion of training to perform learning rate warmup. Default is 0.1. gradient_accumulation (int) — Number of steps to accumulate gradients before updating. Default is 4. optimizer (str) — Optimizer to use for training. Default is “adamw_torch”. scheduler (str) — Learning rate scheduler to use. Default is “linear”. weight_decay (float) — Weight decay to apply to the optimizer. Default is 0.0. max_grad_norm (float) — Maximum norm for gradient clipping. Default is 1.0. seed (int) — Random seed for reproducibility. Default is 42. chat_template (Optional[str]) — Template for chat-based models, options include: None, zephyr, chatml, or tokenizer. Default is None. quantization (Optional[str]) — Quantization method to use (e.g., ‘int4’, ‘int8’, or None). Default is “int4”. target_modules (Optional[str]) — Target modules for quantization or fine-tuning. Default is “all-linear”. merge_adapter (bool) — Whether to merge the adapter layers. Default is False. peft (bool) — Whether to use Parameter-Efficient Fine-Tuning (PEFT). Default is False. lora_r (int) — Rank of the LoRA matrices. Default is 16. lora_alpha (int) — Alpha parameter for LoRA. Default is 32. lora_dropout (float) — Dropout rate for LoRA. Default is 0.05. model_ref (Optional[str]) — Reference model for DPO trainer. Default is None. dpo_beta (float) — Beta parameter for DPO trainer. Default is 0.1. max_prompt_length (int) — Maximum length of the prompt. Default is 128. max_completion_length (Optional[int]) — Maximum length of the completion. Default is None. prompt_text_column (Optional[str]) — Column name for the prompt text. Default is None. text_column (str) — Column name for the text data. Default is “text”. rejected_text_column (Optional[str]) — Column name for the rejected text data. Default is None. push_to_hub (bool) — Whether to push the model to the Hugging Face Hub. Default is False. username (Optional[str]) — Hugging Face username for authentication. Default is None. token (Optional[str]) — Hugging Face token for authentication. Default is None. unsloth (bool) — Whether to use the unsloth library. Default is False. distributed_backend (Optional[str]) — Backend to use for distributed training. Default is None. LLMTrainingParams: Parameters for training a language model using the autotrain library.
class autotrain.trainers.sent_transformers.params. SentenceTransformersParams < source > ( data_path: str = None model: str = 'microsoft/mpnet-base' lr: float = 3e-05 epochs: int = 3 max_seq_length: int = 128 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' username: typing.Optional[str] = None log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 trainer: str = 'pair_score' sentence1_column: str = 'sentence1' sentence2_column: str = 'sentence2' sentence3_column: typing.Optional[str] = None target_column: typing.Optional[str] = None )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the pre-trained model to use. Default is “microsoft/mpnet-base”. lr (float) — Learning rate for training. Default is 3e-5. epochs (int) — Number of training epochs. Default is 3. max_seq_length (int) — Maximum sequence length for the input. Default is 128. batch_size (int) — Batch size for training. Default is 8. warmup_ratio (float) — Proportion of training to perform learning rate warmup. Default is 0.1. gradient_accumulation (int) — Number of steps to accumulate gradients before updating. Default is 1. optimizer (str) — Optimizer to use. Default is “adamw_torch”. scheduler (str) — Learning rate scheduler to use. Default is “linear”. weight_decay (float) — Weight decay to apply. Default is 0.0. max_grad_norm (float) — Maximum gradient norm for clipping. Default is 1.0. seed (int) — Random seed for reproducibility. Default is 42. train_split (str) — Name of the training data split. Default is “train”. valid_split (Optional[str]) — Name of the validation data split. Default is None. logging_steps (int) — Number of steps between logging. Default is -1. project_name (str) — Name of the project for output directory. Default is “project-name”. auto_find_batch_size (bool) — Whether to automatically find the optimal batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision training mode (fp16, bf16, or None). Default is None. save_total_limit (int) — Maximum number of checkpoints to save. Default is 1. token (Optional[str]) — Token for accessing Hugging Face Hub. Default is None. push_to_hub (bool) — Whether to push the model to Hugging Face Hub. Default is False. eval_strategy (str) — Evaluation strategy to use. Default is “epoch”. username (Optional[str]) — Hugging Face username. Default is None. log (str) — Logging method for experiment tracking. Default is “none”. early_stopping_patience (int) — Number of epochs with no improvement after which training will be stopped. Default is 5. early_stopping_threshold (float) — Threshold for measuring the new optimum, to qualify as an improvement. Default is 0.01. trainer (str) — Name of the trainer to use. Default is “pair_score”. sentence1_column (str) — Name of the column containing the first sentence. Default is “sentence1”. sentence2_column (str) — Name of the column containing the second sentence. Default is “sentence2”. sentence3_column (Optional[str]) — Name of the column containing the third sentence (if applicable). Default is None. target_column (Optional[str]) — Name of the column containing the target variable. Default is None. SentenceTransformersParams is a configuration class for setting up parameters for training sentence transformers.
class autotrain.trainers.seq2seq.params. Seq2SeqParams < source > ( data_path: str = None model: str = 'google/flan-t5-base' username: typing.Optional[str] = None seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None project_name: str = 'project-name' token: typing.Optional[str] = None push_to_hub: bool = False text_column: str = 'text' target_column: str = 'target' lr: float = 5e-05 epochs: int = 3 max_seq_length: int = 128 max_target_length: int = 128 batch_size: int = 2 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 logging_steps: int = -1 eval_strategy: str = 'epoch' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 peft: bool = False quantization: typing.Optional[str] = 'int8' lora_r: int = 16 lora_alpha: int = 32 lora_dropout: float = 0.05 target_modules: str = 'all-linear' log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the model to be used. Default is “google/flan-t5-base”. username (Optional[str]) — Hugging Face Username. seed (int) — Random seed for reproducibility. Default is 42. train_split (str) — Name of the training data split. Default is “train”. valid_split (Optional[str]) — Name of the validation data split. project_name (str) — Name of the project or output directory. Default is “project-name”. token (Optional[str]) — Hub Token for authentication. push_to_hub (bool) — Whether to push the model to the Hugging Face Hub. Default is False. text_column (str) — Name of the text column in the dataset. Default is “text”. target_column (str) — Name of the target text column in the dataset. Default is “target”. lr (float) — Learning rate for training. Default is 5e-5. epochs (int) — Number of training epochs. Default is 3. max_seq_length (int) — Maximum sequence length for input text. Default is 128. max_target_length (int) — Maximum sequence length for target text. Default is 128. batch_size (int) — Training batch size. Default is 2. warmup_ratio (float) — Proportion of warmup steps. Default is 0.1. gradient_accumulation (int) — Number of gradient accumulation steps. Default is 1. optimizer (str) — Optimizer to be used. Default is “adamw_torch”. scheduler (str) — Learning rate scheduler to be used. Default is “linear”. weight_decay (float) — Weight decay for the optimizer. Default is 0.0. max_grad_norm (float) — Maximum gradient norm for clipping. Default is 1.0. logging_steps (int) — Number of steps between logging. Default is -1 (disabled). eval_strategy (str) — Evaluation strategy. Default is “epoch”. auto_find_batch_size (bool) — Whether to automatically find the batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision training mode (fp16, bf16, or None). save_total_limit (int) — Maximum number of checkpoints to save. Default is 1. peft (bool) — Whether to use Parameter-Efficient Fine-Tuning (PEFT). Default is False. quantization (Optional[str]) — Quantization mode (int4, int8, or None). Default is “int8”. lora_r (int) — LoRA-R parameter for PEFT. Default is 16. lora_alpha (int) — LoRA-Alpha parameter for PEFT. Default is 32. lora_dropout (float) — LoRA-Dropout parameter for PEFT. Default is 0.05. target_modules (str) — Target modules for PEFT. Default is “all-linear”. log (str) — Logging method for experiment tracking. Default is “none”. early_stopping_patience (int) — Patience for early stopping. Default is 5. early_stopping_threshold (float) — Threshold for early stopping. Default is 0.01. Seq2SeqParams is a configuration class for sequence-to-sequence training parameters.
class autotrain.trainers.token_classification.params. TokenClassificationParams < source > ( data_path: str = None model: str = 'bert-base-uncased' lr: float = 5e-05 epochs: int = 3 max_seq_length: int = 128 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None tokens_column: str = 'tokens' tags_column: str = 'tags' logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' username: typing.Optional[str] = None log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the model to use. Default is “bert-base-uncased”. lr (float) — Learning rate. Default is 5e-5. epochs (int) — Number of training epochs. Default is 3. max_seq_length (int) — Maximum sequence length. Default is 128. batch_size (int) — Training batch size. Default is 8. warmup_ratio (float) — Warmup proportion. Default is 0.1. gradient_accumulation (int) — Gradient accumulation steps. Default is 1. optimizer (str) — Optimizer to use. Default is “adamw_torch”. scheduler (str) — Scheduler to use. Default is “linear”. weight_decay (float) — Weight decay. Default is 0.0. max_grad_norm (float) — Maximum gradient norm. Default is 1.0. seed (int) — Random seed. Default is 42. train_split (str) — Name of the training split. Default is “train”. valid_split (Optional[str]) — Name of the validation split. Default is None. tokens_column (str) — Name of the tokens column. Default is “tokens”. tags_column (str) — Name of the tags column. Default is “tags”. logging_steps (int) — Number of steps between logging. Default is -1. project_name (str) — Name of the project. Default is “project-name”. auto_find_batch_size (bool) — Whether to automatically find the batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision setting (fp16, bf16, or None). Default is None. save_total_limit (int) — Total number of checkpoints to save. Default is 1. token (Optional[str]) — Hub token for authentication. Default is None. push_to_hub (bool) — Whether to push the model to the Hugging Face hub. Default is False. eval_strategy (str) — Evaluation strategy. Default is “epoch”. username (Optional[str]) — Hugging Face username. Default is None. log (str) — Logging method for experiment tracking. Default is “none”. early_stopping_patience (int) — Patience for early stopping. Default is 5. early_stopping_threshold (float) — Threshold for early stopping. Default is 0.01. TokenClassificationParams is a configuration class for token classification training parameters.
( data_path: str = None model: str = 'bert-base-uncased' lr: float = 5e-05 epochs: int = 3 max_seq_length: int = 128 max_doc_stride: int = 128 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None text_column: str = 'context' question_column: str = 'question' answer_column: str = 'answers' logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' username: typing.Optional[str] = None log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Pre-trained model name. Default is “bert-base-uncased”. lr (float) — Learning rate for the optimizer. Default is 5e-5. epochs (int) — Number of training epochs. Default is 3. max_seq_length (int) — Maximum sequence length for inputs. Default is 128. max_doc_stride (int) — Maximum document stride for splitting context. Default is 128. batch_size (int) — Batch size for training. Default is 8. warmup_ratio (float) — Warmup proportion for learning rate scheduler. Default is 0.1. gradient_accumulation (int) — Number of gradient accumulation steps. Default is 1. optimizer (str) — Optimizer type. Default is “adamw_torch”. scheduler (str) — Learning rate scheduler type. Default is “linear”. weight_decay (float) — Weight decay for the optimizer. Default is 0.0. max_grad_norm (float) — Maximum gradient norm for clipping. Default is 1.0. seed (int) — Random seed for reproducibility. Default is 42. train_split (str) — Name of the training data split. Default is “train”. valid_split (Optional[str]) — Name of the validation data split. Default is None. text_column (str) — Column name for context/text. Default is “context”. question_column (str) — Column name for questions. Default is “question”. answer_column (str) — Column name for answers. Default is “answers”. logging_steps (int) — Number of steps between logging. Default is -1. project_name (str) — Name of the project for output directory. Default is “project-name”. auto_find_batch_size (bool) — Automatically find optimal batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision training mode (fp16, bf16, or None). Default is None. save_total_limit (int) — Maximum number of checkpoints to save. Default is 1. token (Optional[str]) — Authentication token for Hugging Face Hub. Default is None. push_to_hub (bool) — Whether to push the model to Hugging Face Hub. Default is False. eval_strategy (str) — Evaluation strategy during training. Default is “epoch”. username (Optional[str]) — Hugging Face username for authentication. Default is None. log (str) — Logging method for experiment tracking. Default is “none”. early_stopping_patience (int) — Number of epochs with no improvement for early stopping. Default is 5. early_stopping_threshold (float) — Threshold for early stopping improvement. Default is 0.01. ExtractiveQuestionAnsweringParams
class autotrain.trainers.text_classification.params. TextClassificationParams < source > ( data_path: str = None model: str = 'bert-base-uncased' lr: float = 5e-05 epochs: int = 3 max_seq_length: int = 128 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None text_column: str = 'text' target_column: str = 'target' logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' username: typing.Optional[str] = None log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the model to use. Default is “bert-base-uncased”. lr (float) — Learning rate. Default is 5e-5. epochs (int) — Number of training epochs. Default is 3. max_seq_length (int) — Maximum sequence length. Default is 128. batch_size (int) — Training batch size. Default is 8. warmup_ratio (float) — Warmup proportion. Default is 0.1. gradient_accumulation (int) — Number of gradient accumulation steps. Default is 1. optimizer (str) — Optimizer to use. Default is “adamw_torch”. scheduler (str) — Scheduler to use. Default is “linear”. weight_decay (float) — Weight decay. Default is 0.0. max_grad_norm (float) — Maximum gradient norm. Default is 1.0. seed (int) — Random seed. Default is 42. train_split (str) — Name of the training split. Default is “train”. valid_split (Optional[str]) — Name of the validation split. Default is None. text_column (str) — Name of the text column in the dataset. Default is “text”. target_column (str) — Name of the target column in the dataset. Default is “target”. logging_steps (int) — Number of steps between logging. Default is -1. project_name (str) — Name of the project. Default is “project-name”. auto_find_batch_size (bool) — Whether to automatically find the batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision setting (fp16, bf16, or None). Default is None. save_total_limit (int) — Total number of checkpoints to save. Default is 1. token (Optional[str]) — Hub token for authentication. Default is None. push_to_hub (bool) — Whether to push the model to the hub. Default is False. eval_strategy (str) — Evaluation strategy. Default is “epoch”. username (Optional[str]) — Hugging Face username. Default is None. log (str) — Logging method for experiment tracking. Default is “none”. early_stopping_patience (int) — Number of epochs with no improvement after which training will be stopped. Default is 5. early_stopping_threshold (float) — Threshold for measuring the new optimum to continue training. Default is 0.01. TextClassificationParams
is a configuration class for text classification training parameters.
class autotrain.trainers.text_regression.params. TextRegressionParams < source > ( data_path: str = None model: str = 'bert-base-uncased' lr: float = 5e-05 epochs: int = 3 max_seq_length: int = 128 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None text_column: str = 'text' target_column: str = 'target' logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' username: typing.Optional[str] = None log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the pre-trained model to use. Default is “bert-base-uncased”. lr (float) — Learning rate for the optimizer. Default is 5e-5. epochs (int) — Number of training epochs. Default is 3. max_seq_length (int) — Maximum sequence length for the inputs. Default is 128. batch_size (int) — Batch size for training. Default is 8. warmup_ratio (float) — Proportion of training to perform learning rate warmup. Default is 0.1. gradient_accumulation (int) — Number of steps to accumulate gradients before updating. Default is 1. optimizer (str) — Optimizer to use. Default is “adamw_torch”. scheduler (str) — Learning rate scheduler to use. Default is “linear”. weight_decay (float) — Weight decay to apply. Default is 0.0. max_grad_norm (float) — Maximum norm for the gradients. Default is 1.0. seed (int) — Random seed for reproducibility. Default is 42. train_split (str) — Name of the training data split. Default is “train”. valid_split (Optional[str]) — Name of the validation data split. Default is None. text_column (str) — Name of the column containing text data. Default is “text”. target_column (str) — Name of the column containing target data. Default is “target”. logging_steps (int) — Number of steps between logging. Default is -1 (no logging). project_name (str) — Name of the project for output directory. Default is “project-name”. auto_find_batch_size (bool) — Whether to automatically find the batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision training mode (fp16, bf16, or None). Default is None. save_total_limit (int) — Maximum number of checkpoints to save. Default is 1. token (Optional[str]) — Token for accessing Hugging Face Hub. Default is None. push_to_hub (bool) — Whether to push the model to Hugging Face Hub. Default is False. eval_strategy (str) — Evaluation strategy to use. Default is “epoch”. username (Optional[str]) — Hugging Face username. Default is None. log (str) — Logging method for experiment tracking. Default is “none”. early_stopping_patience (int) — Number of epochs with no improvement after which training will be stopped. Default is 5. early_stopping_threshold (float) — Threshold for measuring the new optimum, to qualify as an improvement. Default is 0.01. TextRegressionParams is a configuration class for setting up text regression training parameters.
Image Tasks class autotrain.trainers.image_classification.params. ImageClassificationParams < source > ( data_path: str = None model: str = 'google/vit-base-patch16-224' username: typing.Optional[str] = None lr: float = 5e-05 epochs: int = 3 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' image_column: str = 'image' target_column: str = 'target' log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Pre-trained model name or path. Default is “google/vit-base-patch16-224”. username (Optional[str]) — Hugging Face account username. lr (float) — Learning rate for the optimizer. Default is 5e-5. epochs (int) — Number of epochs for training. Default is 3. batch_size (int) — Batch size for training. Default is 8. warmup_ratio (float) — Warmup ratio for learning rate scheduler. Default is 0.1. gradient_accumulation (int) — Number of gradient accumulation steps. Default is 1. optimizer (str) — Optimizer type. Default is “adamw_torch”. scheduler (str) — Learning rate scheduler type. Default is “linear”. weight_decay (float) — Weight decay for the optimizer. Default is 0.0. max_grad_norm (float) — Maximum gradient norm for clipping. Default is 1.0. seed (int) — Random seed for reproducibility. Default is 42. train_split (str) — Name of the training data split. Default is “train”. valid_split (Optional[str]) — Name of the validation data split. logging_steps (int) — Number of steps between logging. Default is -1. project_name (str) — Name of the project for output directory. Default is “project-name”. auto_find_batch_size (bool) — Automatically find optimal batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision training mode (fp16, bf16, or None). save_total_limit (int) — Maximum number of checkpoints to keep. Default is 1. token (Optional[str]) — Hugging Face Hub token for authentication. push_to_hub (bool) — Whether to push the model to Hugging Face Hub. Default is False. eval_strategy (str) — Evaluation strategy during training. Default is “epoch”. image_column (str) — Column name for images in the dataset. Default is “image”. target_column (str) — Column name for target labels in the dataset. Default is “target”. log (str) — Logging method for experiment tracking. Default is “none”. early_stopping_patience (int) — Number of epochs with no improvement for early stopping. Default is 5. early_stopping_threshold (float) — Threshold for early stopping. Default is 0.01. ImageClassificationParams is a configuration class for image classification training parameters.
class autotrain.trainers.image_regression.params. ImageRegressionParams < source > ( data_path: str = None model: str = 'google/vit-base-patch16-224' username: typing.Optional[str] = None lr: float = 5e-05 epochs: int = 3 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' image_column: str = 'image' target_column: str = 'target' log: str = 'none' early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the model to use. Default is “google/vit-base-patch16-224”. username (Optional[str]) — Hugging Face Username. lr (float) — Learning rate. Default is 5e-5. epochs (int) — Number of training epochs. Default is 3. batch_size (int) — Training batch size. Default is 8. warmup_ratio (float) — Warmup proportion. Default is 0.1. gradient_accumulation (int) — Gradient accumulation steps. Default is 1. optimizer (str) — Optimizer to use. Default is “adamw_torch”. scheduler (str) — Scheduler to use. Default is “linear”. weight_decay (float) — Weight decay. Default is 0.0. max_grad_norm (float) — Max gradient norm. Default is 1.0. seed (int) — Random seed. Default is 42. train_split (str) — Train split name. Default is “train”. valid_split (Optional[str]) — Validation split name. logging_steps (int) — Logging steps. Default is -1. project_name (str) — Output directory name. Default is “project-name”. auto_find_batch_size (bool) — Whether to auto find batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision type (fp16, bf16, or None). save_total_limit (int) — Save total limit. Default is 1. token (Optional[str]) — Hub Token. push_to_hub (bool) — Whether to push to hub. Default is False. eval_strategy (str) — Evaluation strategy. Default is “epoch”. image_column (str) — Image column name. Default is “image”. target_column (str) — Target column name. Default is “target”. log (str) — Logging using experiment tracking. Default is “none”. early_stopping_patience (int) — Early stopping patience. Default is 5. early_stopping_threshold (float) — Early stopping threshold. Default is 0.01. ImageRegressionParams is a configuration class for image regression training parameters.
class autotrain.trainers.object_detection.params. ObjectDetectionParams < source > ( data_path: str = None model: str = 'google/vit-base-patch16-224' username: typing.Optional[str] = None lr: float = 5e-05 epochs: int = 3 batch_size: int = 8 warmup_ratio: float = 0.1 gradient_accumulation: int = 1 optimizer: str = 'adamw_torch' scheduler: str = 'linear' weight_decay: float = 0.0 max_grad_norm: float = 1.0 seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None logging_steps: int = -1 project_name: str = 'project-name' auto_find_batch_size: bool = False mixed_precision: typing.Optional[str] = None save_total_limit: int = 1 token: typing.Optional[str] = None push_to_hub: bool = False eval_strategy: str = 'epoch' image_column: str = 'image' objects_column: str = 'objects' log: str = 'none' image_square_size: typing.Optional[int] = 600 early_stopping_patience: int = 5 early_stopping_threshold: float = 0.01 )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the model to be used. Default is “google/vit-base-patch16-224”. username (Optional[str]) — Hugging Face Username. lr (float) — Learning rate. Default is 5e-5. epochs (int) — Number of training epochs. Default is 3. batch_size (int) — Training batch size. Default is 8. warmup_ratio (float) — Warmup proportion. Default is 0.1. gradient_accumulation (int) — Gradient accumulation steps. Default is 1. optimizer (str) — Optimizer to be used. Default is “adamw_torch”. scheduler (str) — Scheduler to be used. Default is “linear”. weight_decay (float) — Weight decay. Default is 0.0. max_grad_norm (float) — Max gradient norm. Default is 1.0. seed (int) — Random seed. Default is 42. train_split (str) — Name of the training data split. Default is “train”. valid_split (Optional[str]) — Name of the validation data split. logging_steps (int) — Number of steps between logging. Default is -1. project_name (str) — Name of the project for output directory. Default is “project-name”. auto_find_batch_size (bool) — Whether to automatically find batch size. Default is False. mixed_precision (Optional[str]) — Mixed precision type (fp16, bf16, or None). save_total_limit (int) — Total number of checkpoints to save. Default is 1. token (Optional[str]) — Hub Token for authentication. push_to_hub (bool) — Whether to push the model to the Hugging Face Hub. Default is False. eval_strategy (str) — Evaluation strategy. Default is “epoch”. image_column (str) — Name of the image column in the dataset. Default is “image”. objects_column (str) — Name of the target column in the dataset. Default is “objects”. log (str) — Logging method for experiment tracking. Default is “none”. image_square_size (Optional[int]) — Longest size to which the image will be resized, then padded to square. Default is 600. early_stopping_patience (int) — Number of epochs with no improvement after which training will be stopped. Default is 5. early_stopping_threshold (float) — Minimum change to qualify as an improvement. Default is 0.01. ObjectDetectionParams is a configuration class for object detection training parameters.
Tabular Tasks class autotrain.trainers.tabular.params. TabularParams < source > ( data_path: str = None model: str = 'xgboost' username: typing.Optional[str] = None seed: int = 42 train_split: str = 'train' valid_split: typing.Optional[str] = None project_name: str = 'project-name' token: typing.Optional[str] = None push_to_hub: bool = False id_column: str = 'id' target_columns: typing.Union[typing.List[str], str] = ['target'] categorical_columns: typing.Optional[typing.List[str]] = None numerical_columns: typing.Optional[typing.List[str]] = None task: str = 'classification' num_trials: int = 10 time_limit: int = 600 categorical_imputer: typing.Optional[str] = None numerical_imputer: typing.Optional[str] = None numeric_scaler: typing.Optional[str] = None )
Parameters
data_path (str) — Path to the dataset. model (str) — Name of the model to use. Default is “xgboost”. username (Optional[str]) — Hugging Face Username. seed (int) — Random seed for reproducibility. Default is 42. train_split (str) — Name of the training data split. Default is “train”. valid_split (Optional[str]) — Name of the validation data split. project_name (str) — Name of the output directory. Default is “project-name”. token (Optional[str]) — Hub Token for authentication. push_to_hub (bool) — Whether to push the model to the hub. Default is False. id_column (str) — Name of the ID column. Default is “id”. target_columns (Union[List[str], str]) — Target column(s) in the dataset. Default is [“target”]. categorical_columns (Optional[List[str]]) — List of categorical columns. numerical_columns (Optional[List[str]]) — List of numerical columns. task (str) — Type of task (e.g., “classification”). Default is “classification”. num_trials (int) — Number of trials for hyperparameter optimization. Default is 10. time_limit (int) — Time limit for training in seconds. Default is 600. categorical_imputer (Optional[str]) — Imputer strategy for categorical columns. numerical_imputer (Optional[str]) — Imputer strategy for numerical columns. numeric_scaler (Optional[str]) — Scaler strategy for numerical columns. TabularParams is a configuration class for tabular data training parameters.
< > Update on GitHub