AdEMAMix is a variant of the Adam
optimizer.
bitsandbytes also supports paged optimizers which take advantage of CUDAs unified memory to transfer memory from the GPU to the CPU when GPU memory is exhausted.
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 optim_bits: typing.Literal[8, 32] = 32 min_8bit_size: int = 4096 is_paged: bool = False )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 optim_bits: typing.Literal[8, 32] = 32 min_8bit_size: int = 4096 is_paged: bool = False )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 is_paged: bool = False )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 is_paged: bool = False )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 is_paged: bool = False )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 is_paged: bool = False )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 optim_bits: typing.Literal[8, 32] = 32 min_8bit_size: int = 4096 )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 optim_bits: typing.Literal[8, 32] = 32 min_8bit_size: int = 4096 )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 )
( params: typing.Iterable[torch.nn.parameter.Parameter] lr: float = 0.001 betas: typing.Tuple[float, float, float] = (0.9, 0.999, 0.9999) alpha: float = 5.0 t_alpha: typing.Optional[int] = None t_beta3: typing.Optional[int] = None eps: float = 1e-08 weight_decay: float = 0.01 min_8bit_size: int = 4096 )