# QE4PE Pretask The goal of the `pretask` is to familiarize translators with the GroTE interface, indentify potential issue and inform the modality assignment for the `main` task to ensure a uniform distribution of editing times across modalities. Refer to the [translators' guidelines](./pretask_eng-nld_guidelines.pdf) for additional details about the task. ## Folder Structure ```shell pretask/ ├── inputs/ │ ├── eng-ita/ │ │ ├── pretask_eng-ita_doc1_input.txt │ │ ├── pretask_eng-ita_doc2_input.txt │ │ └── ... # GroTE input files with tags and ||| source-target separator │ └── eng-nld/ │ │ ├── pretask_eng-nld_doc1_input.txt │ │ ├── pretask_eng-nld_doc2_input.txt │ │ └── ... # GroTE input files with tags and ||| source-target separator ├── outputs/ │ ├── eng-ita/ │ │ ├── logs/ │ │ │ ├── pretask_eng-ita_t1_logs.csv │ │ │ └── ... # GroTE logs for every translator (e.g. t1) │ │ ├── metrics/ │ │ │ ├── pretask_eng-ita_t1_metrics.csv │ │ │ └── ... # Metrics for every translator (e.g. t1) │ │ ├── pretask_eng-ita_doc1_t1_output.txt │ │ └── ... # GroTE output files (one edited target per line) │ └── eng-nld/ │ ├── logs/ │ │ ├── pretask_eng-nld_t1_logs.csv │ │ └── ... # GroTE logs for every translator (e.g. t1) │ ├── metrics/ │ │ ├── pretask_eng-nld_t1_metrics.csv │ │ └── ... # Metrics for every translator (e.g. t1) │ ├── example_eng-nld_doc1_t1_output.txt │ └── ... # GroTE output files (one post-edited segment per line) ├── doc_id_map.json # Source and doc name maps ├── main_task_assignments.json # Translator assignments to main task modalities ├── pretask_eng-ita_guidelines.pdf # Task guidelines for translators ├── pretask_eng-nld_guidelines.pdf # Task guidelines for translators └── README.md ``` ## Inputs The `pretask` uses six documents containing between 6-10 contiguous segments from the same `wmt23` collection of the `main` task that were matching all the `main` task requirements, but were not selected for the main collection. [doc_id_map.json](./doc_id_map.json) shows the document assignments from the original collection. We use the `supervised` highlights produced by XCOMET-XXL to familiarize translators with editing highlighted texts with highlights being assumed to be of a good but not "perfect" quality (as opposed to `oracle`). Word-level error spans are extended to match closest word boundaries whenever necessary. Input files for the task have names using the format: ```python "{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{DOC_ID}}_input.txt" ``` ## Main Task Assignments From the `pretask` results, we create 3 groups per translation direction representing faster (1), average (2) and slower (3) translators by splitting the time-ranked list of translators in three blocks of equal size. In every block, we assign a modality to each translator randomly (random seed = 42). All gaps >5 minutes in the logs are omitted from the calculation to account for accidental AFK time during logging. The final assignments (also in `main_task_assignments.json` for machine-readable format) are: ### English - Italian | Name | Time | Modality | Alias | |------------|------|--------------|-----------------| | **Group 1**| | | | | t8 | 37m | supervised | supervised_t1 | | t11 | 45m | oracle | oracle_t1 | | t10 | 51m | no_highlight | no_highlight_t1 | | t7 | 62m | unsupervised | unsupervised_t1 | | **Group 2**| | | | | t1 | 68m | oracle | oracle_t2 | | t5 | 70m | unsupervised | unsupervised_t2 | | t6 | 74m | supervised | supervised_t2 | | t12 | 100m | no_highlight | no_highlight_t2 | | **Group 3**| | | | | t9 | 106m | no_highlight | no_highlight_t3 | | t3 | 122m | oracle | oracle_t3 | | t2 | 164m | unsupervised | unsupervised_t3 | | t4 | 185m | supervised | supervised_t3 | ### English - Dutch | Name | Time | Modality | Alias | |------------|------|--------------|-----------------| | **Group 1**| | | | | t4 | 23m | oracle | oracle_t1 | | t12 | 27m | supervised | supervised_t1 | | t1 | 31m | no_highlight | no_highlight_t1 | | t7 | 36m | unsupervised | unsupervised_t1 | | **Group 2**| | | | | t8 | 44m | supervised | supervised_t2 | | t2 | 44m | unsupervised | unsupervised_t2 | | t11 | 65m | oracle | oracle_t2 | | t5 | 66m | no_highlight | no_highlight_t2 | | **Group 3**| | | | | t9 | 68m | no_highlight | no_highlight_t3 | | t6 | 76m | supervised | supervised_t3 | | t3 | 103m | unsupervised | unsupervised_t3 | | t10 | 152m | oracle | oracle_t3 | > `t13` was added for Dutch as a replacement for `t9`, which compromised a part of the task by not following the guidelines. `t13` was assigned to `no_highlight` using `no_highlight_t4` as an Alias. The pre-task editing time for `t13` was 19 minutes. ## Outputs Files in `outputs/eng-ita` and `outputs/eng-nld` contain post-edited outputs (one per line, matching inputs) using format: ```python "{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{DOC_ID}}_{{TRANSLATOR_ID}}_output.txt" ``` The contents of `outputs/{{TRANSLATION_DIRECTION}}/logs` can be used to analyze editing behavior at a granular scale. Each log file has format: ```python "{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{TRANSLATOR_ID}}_logs.csv" ``` Refer to [GroTE](https://github.com/gsarti/grote) documentation for more information about the logs. The contents of `outputs/{{TRANSLATION_DIRECTION}}/metrics` contain aggregated metrics for each translator, with name format: ```python "{{TASK_ID}}_{{TRANSLATION_DIRECTION}}_{{TRANSLATOR_ID}}_metrics.csv" ``` Metrics include: 1. max/min/mean/std of BLEU, chrF, TER and COMET scores computed between the MT or the PE texts and all (other, in case of PE) post-edited variants of the same segment for `{{TRANSLATION_DIRECTION}}`. 2. XCOMET-XXL segment-level QE scores and errors for the MT and PE texts.