gouki510 commited on
Commit
0a5a7d4
·
verified ·
1 Parent(s): d6a3882

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -9
README.md CHANGED
@@ -3,7 +3,7 @@ license: cc
3
  language:
4
  - en
5
  ---
6
- ---
7
  # Dataset Card for PS-Eval Dataset
8
 
9
  ## Dataset Summary
@@ -64,7 +64,7 @@ The dataset is provided as a single split with **1,112 samples**:
64
 
65
  ## Dataset Creation
66
  ### Source Data
67
- The PS-Eval dataset is built on top of the **WiC Dataset** (Word-in-Context) – a rich resource for polysemous words originally introduced in \citet{pilehvar2019wic}.
68
 
69
  ### Filtering Process
70
  We carefully selected instances from WiC where the target word is tokenized as a **single token** in GPT-2-small. This ensures consistency when analyzing activations in Sparse Autoencoders.
@@ -100,7 +100,9 @@ The dataset supports evaluation metrics such as:
100
  - **F1 Score**
101
  - **Specificity**
102
 
103
- These metrics are particularly important for evaluating polysemy detection models and Sparse Autoencoders.
 
 
104
 
105
  ## Dataset Curators
106
  This dataset was curated by **Gouki Minegishi** as part of research on polysemantic activation analysis in Sparse Autoencoders and interpretability for large language models.
@@ -109,11 +111,10 @@ This dataset was curated by **Gouki Minegishi** as part of research on polyseman
109
  If you use the PS-Eval Dataset in your work, please cite:
110
 
111
  ```
112
- @inproceedings{your2025ps_eval,
113
- title={hoge},
114
- author={hoge},
115
- booktitle={hoge},
116
- year={2025}
117
  }
118
  ```
119
-
 
3
  language:
4
  - en
5
  ---
6
+
7
  # Dataset Card for PS-Eval Dataset
8
 
9
  ## Dataset Summary
 
64
 
65
  ## Dataset Creation
66
  ### Source Data
67
+ The PS-Eval dataset is built on top of the **WiC Dataset** (Word-in-Context) – a rich resource for polysemous words originally introduced in [Pilehvar and Camacho-Collados (2019)](https://arxiv.org/abs/1808.09121).
68
 
69
  ### Filtering Process
70
  We carefully selected instances from WiC where the target word is tokenized as a **single token** in GPT-2-small. This ensures consistency when analyzing activations in Sparse Autoencoders.
 
100
  - **F1 Score**
101
  - **Specificity**
102
 
103
+ These metrics are particularly important for evaluating polysemy detection models and Sparse Autoencoders.
104
+
105
+ For implementation details of the evaluation metrics, please refer to the GitHub repository: **[link_to_your_repo]**.
106
 
107
  ## Dataset Curators
108
  This dataset was curated by **Gouki Minegishi** as part of research on polysemantic activation analysis in Sparse Autoencoders and interpretability for large language models.
 
111
  If you use the PS-Eval Dataset in your work, please cite:
112
 
113
  ```
114
+ @inproceedings{minegishi2024ps-eval,
115
+ title={Rethinking Evaluation of Sparse Autoencoders through the Representation of Polysemous Words},
116
+ author={Gouki Minegishi, Hiroki Furuta, Yusuke Iwasawa, Yutaka Matsuo},
117
+ year={2024},
118
+ url={hoge}
119
  }
120
  ```