giantfish-fly commited on
Commit
a008746
·
verified ·
1 Parent(s): 44715ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -15
README.md CHANGED
@@ -178,6 +178,23 @@ Currently it includes two files:
178
  - **sequential_additional.parquet** → Sequential mode (non-randomized, strict per-key ordered update blocks). Trivial for humans yet still challenging for many LLMs; smaller (all <600B) models are especially affected, with proactive-interference effects clearly exposed (even in short contexts, ~5–8k tokens).
179
 
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  ## Quick Start - Evaluate Your Model
182
 
183
  ```python
@@ -350,6 +367,126 @@ if 'run_id' in results_df.columns:
350
  print(f"{r['experiment']}: {r['accuracy_percent']:.1f}% (averaged over runs)")
351
 
352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
 
354
 
355
 
@@ -368,18 +505,3 @@ if 'run_id' in results_df.columns:
368
  url={https://arxiv.org/abs/2506.08184},
369
  }
370
  ```
371
-
372
- We are an interdisciplinary group interested and probing the boundaries between human and machine intelligence.
373
-
374
- Chupei Wang*
375
- Bachelor, University of Virginia, Physics Department.
376
-
377
- With a foundation in physics and philosophy—including a year at the University of Chicago Divinity School—Chupei explores where logic and mind meet their limits, probing how the edges of science and the humanities intersect. Chupei is driven by a curiosity about where cognitive architectures—biological and artificial—break down, and what these failures teach us about intelligence itself. Currently seeking Lab and Research.
378
-
379
380
-
381
- Jiaqiu Vince Sun*
382
- PhD Candidate, NYU Center for Neuroscience
383
-
384
- A former professional architect turned neuroscientist, Jiaqiu draws on his background in spatial design, cognitive neuroscience, and philosophy of mind to investigate how memory emerges and diverges in brains and artificial systems. His primary focus lies in the higher-level functions of the brain, such as self-monitoring and control.
385
 
178
  - **sequential_additional.parquet** → Sequential mode (non-randomized, strict per-key ordered update blocks). Trivial for humans yet still challenging for many LLMs; smaller (all <600B) models are especially affected, with proactive-interference effects clearly exposed (even in short contexts, ~5–8k tokens).
179
 
180
 
181
+
182
+ We are an interdisciplinary group interested and probing the boundaries between human and machine intelligence.
183
+
184
+ Chupei Wang*
185
+ Bachelor, University of Virginia, Physics Department.
186
+
187
+ With a foundation in physics and philosophy—including a year at the University of Chicago Divinity School—Chupei explores where logic and mind meet their limits, probing how the edges of science and the humanities intersect. Chupei is driven by a curiosity about where cognitive architectures—biological and artificial—break down, and what these failures teach us about intelligence itself. Currently seeking Lab and Research.
188
+
189
190
+
191
+ Jiaqiu Vince Sun*
192
+ PhD Candidate, NYU Center for Neuroscience
193
+
194
+ A former professional architect turned neuroscientist, Jiaqiu draws on his background in spatial design, cognitive neuroscience, and philosophy of mind to investigate how memory emerges and diverges in brains and artificial systems. His primary focus lies in the higher-level functions of the brain, such as self-monitoring and control.
195
196
+
197
+
198
  ## Quick Start - Evaluate Your Model
199
 
200
  ```python
 
367
  print(f"{r['experiment']}: {r['accuracy_percent']:.1f}% (averaged over runs)")
368
 
369
 
370
+ ## 🏆 Advanced Evaluation with AUC Scoring
371
+
372
+ ### Why AUC Scoring?
373
+ - **Average accuracy** treats all tasks equally → poor model differentiation
374
+ - **AUC (log base 1.5)** weighs harder tasks more → better high-end model ranking
375
+ - **Essential for research** comparing SOTA models on difficult ranges
376
+
377
+ ### Complete Evaluation Function
378
+
379
+ ```python
380
+ import math
381
+
382
+ def compute_pi_auc_score(results, log_base=1.5):
383
+ """
384
+ PI-LLM AUC score (PRIMARY: 'auc_log1.5'), using log_base(n_updates) weights.
385
+ - For two-mode experiments (keys/value length), also returns easy/hard AUCs.
386
+ - For others (updates/sequential), returns a single overall AUC.
387
+ """
388
+ if not results:
389
+ return {'avg_accuracy': 0.0, 'auc_log1.5': 0.0, 'total_samples': 0}
390
+
391
+ def wmean(samples):
392
+ # weight = log_base(max(n_updates, 2)) to reflect difficulty
393
+ ws = [math.log(max(s.get('n_updates', 2), 2), log_base) for s in samples]
394
+ denom = sum(ws)
395
+ return (sum(s['accuracy'] * w for s, w in zip(samples, ws)) / denom) if denom else 0.0
396
+
397
+ exp = results[0].get('experiment', '')
398
+ avg = sum(s['accuracy'] for s in results) / len(results)
399
+ overall = wmean(results)
400
+
401
+ # Two-mode thresholds
402
+ if 'exp_keys' in exp:
403
+ easy_thr, hard_thr = 125, 350
404
+ elif 'exp_valuelength' in exp:
405
+ easy_thr, hard_thr = 4, 20
406
+ else:
407
+ # Single-mode path
408
+ return {'avg_accuracy': avg, 'auc_log1.5': overall, 'total_samples': len(results)}
409
+
410
+ easy = [s for s in results if s.get('n_updates', 0) <= easy_thr]
411
+ hard = [s for s in results if s.get('n_updates', 0) >= hard_thr]
412
+
413
+ return {
414
+ 'avg_accuracy': avg,
415
+ 'auc_log1.5': overall, # PRIMARY metric
416
+ 'auc_log1.5_easy': wmean(easy) if easy else 0.0,
417
+ 'auc_log1.5_hard': wmean(hard) if hard else 0.0,
418
+ 'total_samples': len(results),
419
+ }
420
+ ```
421
+
422
+ ### Usage Example
423
+
424
+ ```python
425
+ from datasets import load_dataset
426
+
427
+ # Load PI-LLM dataset
428
+ dataset = load_dataset("giantfish-fly/pi-llm", "core")['test']
429
+
430
+ # Run your model and collect results
431
+ results = []
432
+ for sample in dataset:
433
+ pred = your_model(sample['prompt']) # Your model inference
434
+ accuracy = grade_pi_response(pred, sample['answer_formatted'])
435
+ results.append({
436
+ 'accuracy': accuracy,
437
+ 'n_updates': sample['n_updates'],
438
+ 'experiment': sample['experiment']
439
+ })
440
+
441
+ # Compute AUC scores
442
+ scores = compute_pi_auc_score(results)
443
+
444
+ # Display results (format varies by experiment)
445
+ print(f"🏆 AUC Score: {scores['auc_log1.5']:.3f}") # PRIMARY metric
446
+ if 'auc_log1.5_easy' in scores:
447
+ print(f"📊 Easy Mode: {scores['auc_log1.5_easy']:.3f}")
448
+ print(f"📊 Hard Mode: {scores['auc_log1.5_hard']:.3f}")
449
+ ```
450
+
451
+ ### Output Formats
452
+
453
+ **Single-Mode Experiments** (`exp_updates`, `exp_sequential`):
454
+ ```python
455
+ {'avg_accuracy': 0.600, 'auc_log1.5': 0.412, 'total_samples': 100}
456
+ ```
457
+
458
+ **Two-Mode Experiments** (`exp_keys`, `exp_valuelength`):
459
+ ```python
460
+ {
461
+ 'avg_accuracy': 0.600, 'auc_log1.5': 0.576, # Overall metrics
462
+ 'auc_log1.5_easy': 0.850, 'auc_log1.5_hard': 0.350, # Mode breakdown
463
+ 'total_samples': 150
464
+ }
465
+ ```
466
+
467
+ ### 🎯 For Model Ranking: Use `auc_log1.5` as your primary metric!
468
+
469
+ ### ✅ Finally, Total Score (Macro PI-AUC1.5)
470
+
471
+ **Definition:** average of each test’s `auc_log1.5` (simple, clear leaderboard number).
472
+
473
+ ```python
474
+ def compute_total_pi_auc(all_tests, log_base=1.5):
475
+ """
476
+ Total PI-AUC1.5 across tests = average of per-test auc_log1.5.
477
+ all_tests: dict {test_name -> list[results]} where each `results` list
478
+ is what you'd pass to compute_pi_auc_score(...).
479
+ """
480
+ if not all_tests:
481
+ return {"per_test_auc_log1.5": {}, "total_auc_log1.5": 0.0}
482
+
483
+ per_test = {
484
+ name: compute_pi_auc_score(rs, log_base)["auc_log1.5"]
485
+ for name, rs in all_tests.items() if rs
486
+ }
487
+ total = sum(per_test.values()) / len(per_test) if per_test else 0.0
488
+ return {"per_test_auc_log1.5": per_test, "total_auc_log1.5": total}
489
+
490
 
491
 
492
 
 
505
  url={https://arxiv.org/abs/2506.08184},
506
  }
507
  ```