Upload layers_diffusion_4.py with huggingface_hub
Browse files- layers_diffusion_4.py +1490 -0
layers_diffusion_4.py
ADDED
|
@@ -0,0 +1,1490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
from torch.nn import RMSNorm
|
| 7 |
+
import numpy as np
|
| 8 |
+
#from .config import DiaConfig
|
| 9 |
+
from state import DecoderInferenceState, EncoderInferenceState, KVCache
|
| 10 |
+
from transformers.modeling_outputs import CausalLMOutput,CausalLMOutputWithCrossAttentions
|
| 11 |
+
from safetensors.torch import load_file
|
| 12 |
+
from config import Config
|
| 13 |
+
import os
|
| 14 |
+
import math
|
| 15 |
+
from typing import Optional
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from transformers.modeling_outputs import ModelOutput
|
| 18 |
+
from typing import Optional, Tuple
|
| 19 |
+
from transformers import T5EncoderModel
|
| 20 |
+
import math
|
| 21 |
+
from einops import rearrange
|
| 22 |
+
from convnext.convnext import ConvNeXtV2, IdentityConvNeXtV2
|
| 23 |
+
from text_encoder.model import T5Encoder
|
| 24 |
+
from scipy import stats
|
| 25 |
+
from diffloss import DiffLoss
|
| 26 |
+
|
| 27 |
+
@dataclass
|
| 28 |
+
class QuoteTTSOutput(ModelOutput):
|
| 29 |
+
"""
|
| 30 |
+
Base class for masked language models outputs.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 34 |
+
Masked language modeling (MLM) loss.
|
| 35 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 36 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 37 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 38 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 39 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 40 |
+
|
| 41 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 42 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 43 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 44 |
+
sequence_length)`.
|
| 45 |
+
|
| 46 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 47 |
+
heads.
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
loss: Optional[torch.FloatTensor] = None
|
| 51 |
+
mask_loss: Optional[torch.FloatTensor] = None
|
| 52 |
+
logits: Optional[torch.FloatTensor] = None
|
| 53 |
+
labels: Optional[torch.FloatTensor] = None
|
| 54 |
+
expressive_latents: Optional[torch.FloatTensor] = None
|
| 55 |
+
labels_latents: Optional[torch.FloatTensor] = None
|
| 56 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 57 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 58 |
+
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 59 |
+
target_mask: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 60 |
+
mu: Optional[torch.FloatTensor] = None
|
| 61 |
+
logvar: Optional[torch.FloatTensor] = None
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class SinusoidalPosEmb(nn.Module):
|
| 65 |
+
def __init__(self, dim):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.dim = dim
|
| 68 |
+
|
| 69 |
+
def forward(self, x):
|
| 70 |
+
device = x.device
|
| 71 |
+
half_dim = self.dim // 2
|
| 72 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 73 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
| 74 |
+
emb = x[:, None] * emb[None, :] * 1.0
|
| 75 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 76 |
+
return emb
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
|
| 81 |
+
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
|
| 82 |
+
|
| 83 |
+
class DenseGeneral(nn.Module):
|
| 84 |
+
"""
|
| 85 |
+
PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.
|
| 86 |
+
|
| 87 |
+
Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
|
| 88 |
+
for the generalized matrix multiplication. Weight/bias shapes are calculated
|
| 89 |
+
and parameters created during initialization based on config.
|
| 90 |
+
`load_weights` validates shapes and copies data.
|
| 91 |
+
|
| 92 |
+
Attributes:
|
| 93 |
+
axis (Tuple[int, ...]): Input axis or axes to contract.
|
| 94 |
+
in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
|
| 95 |
+
out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
|
| 96 |
+
use_bias (bool): Whether to add a bias term.
|
| 97 |
+
weight (nn.Parameter): The kernel parameter.
|
| 98 |
+
bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
def __init__(
|
| 102 |
+
self,
|
| 103 |
+
in_shapes: tuple[int, ...],
|
| 104 |
+
out_features: tuple[int, ...],
|
| 105 |
+
axis: tuple[int, ...] = (-1,),
|
| 106 |
+
#weight_dtype: torch.dtype = None,
|
| 107 |
+
#device: torch.device = None,
|
| 108 |
+
):
|
| 109 |
+
super().__init__()
|
| 110 |
+
self.in_shapes = in_shapes
|
| 111 |
+
self.out_features = out_features
|
| 112 |
+
self.axis = axis
|
| 113 |
+
self.kernel_shape = self.in_shapes + self.out_features
|
| 114 |
+
|
| 115 |
+
# factory_kwargs = {"device": device, "dtype": weight_dtype}
|
| 116 |
+
self.weight = nn.Parameter(torch.empty(self.kernel_shape))
|
| 117 |
+
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
| 118 |
+
# torch.nn.init.normal_(self.weight, std=.02)
|
| 119 |
+
|
| 120 |
+
def forward(self, inputs: Tensor) -> Tensor:
|
| 121 |
+
norm_axis = _normalize_axes(self.axis, inputs.ndim)
|
| 122 |
+
kernel_contract_axes = tuple(range(len(norm_axis)))
|
| 123 |
+
|
| 124 |
+
output = torch.tensordot(
|
| 125 |
+
inputs.to(self.weight.dtype),
|
| 126 |
+
self.weight,
|
| 127 |
+
dims=(norm_axis, kernel_contract_axes),
|
| 128 |
+
).to(inputs.dtype)
|
| 129 |
+
return output
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class MlpBlock(nn.Module):
|
| 133 |
+
"""MLP block using DenseGeneral."""
|
| 134 |
+
|
| 135 |
+
def __init__(self, embed_dim: int, intermediate_dim: int, out_dim:int=None):
|
| 136 |
+
super().__init__()
|
| 137 |
+
|
| 138 |
+
self.wi_fused = DenseGeneral(
|
| 139 |
+
in_shapes=(embed_dim,),
|
| 140 |
+
out_features=(2, intermediate_dim),
|
| 141 |
+
axis=(-1,),
|
| 142 |
+
)
|
| 143 |
+
if out_dim is None :
|
| 144 |
+
out_dim = embed_dim
|
| 145 |
+
|
| 146 |
+
self.wo = DenseGeneral(
|
| 147 |
+
in_shapes=(intermediate_dim,),
|
| 148 |
+
out_features=(out_dim,),
|
| 149 |
+
axis=(-1,),
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 153 |
+
"""Forward pass."""
|
| 154 |
+
fused_x = self.wi_fused(x)
|
| 155 |
+
|
| 156 |
+
gate = fused_x[..., 0, :]
|
| 157 |
+
up = fused_x[..., 1, :]
|
| 158 |
+
|
| 159 |
+
hidden = torch.mul(F.silu(gate), up)
|
| 160 |
+
|
| 161 |
+
output = self.wo(hidden)
|
| 162 |
+
return output
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class LlamaAdaptiveRMSNorm(nn.Module):
|
| 166 |
+
def __init__(self, hidden_size=1024, eps=1e-6, dim_cond=1024):
|
| 167 |
+
super().__init__()
|
| 168 |
+
self.to_weight = nn.Linear(dim_cond, hidden_size)
|
| 169 |
+
nn.init.zeros_(self.to_weight.weight)
|
| 170 |
+
nn.init.ones_(self.to_weight.bias)
|
| 171 |
+
self.variance_epsilon = eps
|
| 172 |
+
self._is_hf_initialized = True # disable automatic init
|
| 173 |
+
|
| 174 |
+
def forward(self, hidden_states, cond_embedding):
|
| 175 |
+
input_dtype = hidden_states.dtype
|
| 176 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 177 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 178 |
+
|
| 179 |
+
weight = self.to_weight(cond_embedding)
|
| 180 |
+
if len(weight.shape) == 2:
|
| 181 |
+
weight = weight.unsqueeze(1)
|
| 182 |
+
|
| 183 |
+
return (weight * hidden_states).to(input_dtype)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class RotaryEmbedding(nn.Module):
|
| 187 |
+
"""Rotary Position Embedding (RoPE) implementation in PyTorch."""
|
| 188 |
+
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
embedding_dims: int,
|
| 192 |
+
min_timescale: int = 1,
|
| 193 |
+
max_timescale: int = 10000,
|
| 194 |
+
):
|
| 195 |
+
super().__init__()
|
| 196 |
+
if embedding_dims % 2 != 0:
|
| 197 |
+
raise ValueError("Embedding dim must be even for RoPE.")
|
| 198 |
+
self.embedding_dims = embedding_dims
|
| 199 |
+
self.min_timescale = min_timescale
|
| 200 |
+
self.max_timescale = max_timescale
|
| 201 |
+
|
| 202 |
+
half_embedding_dim = embedding_dims // 2
|
| 203 |
+
fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
|
| 204 |
+
timescale = (self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction).to(torch.float32)
|
| 205 |
+
self.register_buffer("timescale", timescale, persistent=False)
|
| 206 |
+
|
| 207 |
+
def forward(self, inputs: torch.Tensor, position: torch.Tensor):
|
| 208 |
+
"""Applies RoPE."""
|
| 209 |
+
position = position.unsqueeze(-1).unsqueeze(-1)
|
| 210 |
+
sinusoid_inp = position / self.timescale
|
| 211 |
+
sin = torch.sin(sinusoid_inp)
|
| 212 |
+
cos = torch.cos(sinusoid_inp)
|
| 213 |
+
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
|
| 214 |
+
first_part = first_half * cos - second_half * sin
|
| 215 |
+
second_part = second_half * cos + first_half * sin
|
| 216 |
+
return torch.cat((first_part, second_part), dim=-1)
|
| 217 |
+
|
| 218 |
+
def apply_rope(self, inputs: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor):
|
| 219 |
+
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
|
| 220 |
+
first_part = first_half * cos - second_half * sin
|
| 221 |
+
second_part = second_half * cos + first_half * sin
|
| 222 |
+
return torch.cat((first_part, second_part), dim=-1)
|
| 223 |
+
|
| 224 |
+
class selfAttention(nn.Module):
|
| 225 |
+
"""Attention using DenseGeneral."""
|
| 226 |
+
|
| 227 |
+
def __init__(
|
| 228 |
+
self,
|
| 229 |
+
config,
|
| 230 |
+
q_embed_dim: int,
|
| 231 |
+
kv_embed_dim: int,
|
| 232 |
+
num_query_heads: int,
|
| 233 |
+
num_kv_heads: int,
|
| 234 |
+
head_dim: int,
|
| 235 |
+
is_cross_attn: bool = False,
|
| 236 |
+
out_embed_dim: int = None,
|
| 237 |
+
output_attentions=False,
|
| 238 |
+
):
|
| 239 |
+
super().__init__()
|
| 240 |
+
self.num_query_heads = num_query_heads
|
| 241 |
+
self.num_kv_heads = num_kv_heads
|
| 242 |
+
self.head_dim = head_dim
|
| 243 |
+
self.is_cross_attn = is_cross_attn
|
| 244 |
+
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
| 245 |
+
self.projected_query_dim = num_query_heads * head_dim
|
| 246 |
+
if num_query_heads % num_kv_heads != 0:
|
| 247 |
+
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
|
| 248 |
+
self.num_gqa_groups = num_query_heads // num_kv_heads
|
| 249 |
+
self.kv_embed_dim = kv_embed_dim
|
| 250 |
+
self.q_embed_dim = q_embed_dim
|
| 251 |
+
self.output_attentions = output_attentions
|
| 252 |
+
self.dropout_rate = config.model.dropout_rate
|
| 253 |
+
# self.dropout = nn.Dropout(config.dropout_rate)
|
| 254 |
+
|
| 255 |
+
# --- Projection Layers using DenseGeneral ---
|
| 256 |
+
self.q_proj = DenseGeneral(
|
| 257 |
+
in_shapes=(q_embed_dim,),
|
| 258 |
+
out_features=(num_query_heads, head_dim),
|
| 259 |
+
axis=(-1,),
|
| 260 |
+
)
|
| 261 |
+
self.k_proj = DenseGeneral(
|
| 262 |
+
in_shapes=(kv_embed_dim,),
|
| 263 |
+
out_features=(num_kv_heads, head_dim),
|
| 264 |
+
axis=(-1,),
|
| 265 |
+
)
|
| 266 |
+
self.v_proj = DenseGeneral(
|
| 267 |
+
in_shapes=(kv_embed_dim,),
|
| 268 |
+
out_features=(num_kv_heads, head_dim),
|
| 269 |
+
axis=(-1,),
|
| 270 |
+
)
|
| 271 |
+
self.o_proj = DenseGeneral(
|
| 272 |
+
in_shapes=(num_query_heads, head_dim),
|
| 273 |
+
out_features=(self.output_dim,),
|
| 274 |
+
axis=(-2, -1),
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# --- Rotary Embedding ---
|
| 278 |
+
self.rotary_emb = RotaryEmbedding(
|
| 279 |
+
embedding_dims=self.head_dim,
|
| 280 |
+
min_timescale=config.model.rope_min_timescale,
|
| 281 |
+
max_timescale=config.model.rope_max_timescale,
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
self.is_fused_qkv = False
|
| 285 |
+
|
| 286 |
+
def forward(
|
| 287 |
+
self,
|
| 288 |
+
X: torch.Tensor, # (B, T, D) T = 1 in AR generation
|
| 289 |
+
q_positions: torch.Tensor, # (B, T)
|
| 290 |
+
kv_positions: torch.Tensor = None, # (B, S)
|
| 291 |
+
attn_mask: torch.Tensor = None, # None in Decoder self Attention, Valid mask in Others
|
| 292 |
+
cache: KVCache = None, # None in Encoder, KVCache in Decoder
|
| 293 |
+
prefill: bool = False,
|
| 294 |
+
is_causal: bool = False,
|
| 295 |
+
) :
|
| 296 |
+
"""
|
| 297 |
+
Performs attention calculation with optional KV caching.
|
| 298 |
+
|
| 299 |
+
Args:
|
| 300 |
+
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
| 301 |
+
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
| 302 |
+
q_positions: Positions for queries (B, T).
|
| 303 |
+
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
| 304 |
+
attn_mask: Attention mask.
|
| 305 |
+
cache: KVCache.
|
| 306 |
+
prefill: If True, use prefill mode.
|
| 307 |
+
|
| 308 |
+
Returns:
|
| 309 |
+
A tuple containing:
|
| 310 |
+
- output: The attention output tensor (B, T, output_dim).
|
| 311 |
+
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
| 312 |
+
"""
|
| 313 |
+
if kv_positions is None:
|
| 314 |
+
kv_positions = q_positions
|
| 315 |
+
|
| 316 |
+
original_dtype = X.dtype
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
Xq_BxTxNxH = self.q_proj(X)
|
| 320 |
+
Xk_BxSxKxH = self.k_proj(X)
|
| 321 |
+
Xv_BxSxKxH = self.v_proj(X)
|
| 322 |
+
|
| 323 |
+
position = q_positions.unsqueeze(-1).unsqueeze(-1)
|
| 324 |
+
sinusoid_inp = position / self.rotary_emb.timescale
|
| 325 |
+
sin = torch.sin(sinusoid_inp)
|
| 326 |
+
cos = torch.cos(sinusoid_inp)
|
| 327 |
+
|
| 328 |
+
Xq_BxTxNxH = self.rotary_emb.apply_rope(Xq_BxTxNxH, sin, cos)
|
| 329 |
+
Xk_BxSxKxH = self.rotary_emb.apply_rope(Xk_BxSxKxH, sin, cos)
|
| 330 |
+
|
| 331 |
+
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
|
| 332 |
+
|
| 333 |
+
attn_k = None
|
| 334 |
+
attn_v = None
|
| 335 |
+
|
| 336 |
+
Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
| 337 |
+
Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2) # (B, K, S, H)
|
| 338 |
+
|
| 339 |
+
if cache is None:
|
| 340 |
+
attn_k = Xk_BxKxSxH
|
| 341 |
+
attn_v = Xv_BxKxSxH
|
| 342 |
+
else:
|
| 343 |
+
attn_k, attn_v = cache.update(Xk_BxKxSxH, Xv_BxKxSxH, current_idx)
|
| 344 |
+
|
| 345 |
+
# print(Xq_BxNxTxH.size(), attn_k.size(), attn_v.size())
|
| 346 |
+
|
| 347 |
+
# print(attn_mask)
|
| 348 |
+
attn_output = F.scaled_dot_product_attention(
|
| 349 |
+
Xq_BxNxTxH,
|
| 350 |
+
attn_k,
|
| 351 |
+
attn_v,
|
| 352 |
+
attn_mask=attn_mask if not is_causal else None,
|
| 353 |
+
scale=None,
|
| 354 |
+
enable_gqa=self.num_gqa_groups > 1,
|
| 355 |
+
is_causal=is_causal,
|
| 356 |
+
dropout_p=self.dropout_rate if self.training else 0.0
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
|
| 360 |
+
output = self.o_proj(attn_output)
|
| 361 |
+
|
| 362 |
+
return output.to(original_dtype)
|
| 363 |
+
|
| 364 |
+
class CrossAttention(nn.Module):
|
| 365 |
+
"""Cross-Attention using DenseGeneral."""
|
| 366 |
+
|
| 367 |
+
def __init__(
|
| 368 |
+
self,
|
| 369 |
+
config,
|
| 370 |
+
q_embed_dim: int,
|
| 371 |
+
kv_embed_dim: int,
|
| 372 |
+
num_query_heads: int,
|
| 373 |
+
num_kv_heads: int,
|
| 374 |
+
head_dim: int,
|
| 375 |
+
out_embed_dim: int = None,
|
| 376 |
+
output_attentions=False
|
| 377 |
+
):
|
| 378 |
+
super().__init__()
|
| 379 |
+
self.num_query_heads = num_query_heads
|
| 380 |
+
self.num_kv_heads = num_kv_heads
|
| 381 |
+
self.head_dim = head_dim
|
| 382 |
+
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
|
| 383 |
+
self.projected_query_dim = num_query_heads * head_dim
|
| 384 |
+
if num_query_heads % num_kv_heads != 0:
|
| 385 |
+
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
|
| 386 |
+
self.num_gqa_groups = num_query_heads // num_kv_heads
|
| 387 |
+
self.output_attentions=output_attentions
|
| 388 |
+
self.dropout_rate = config.model.dropout_rate
|
| 389 |
+
# --- Projection Layers using DenseGeneral ---
|
| 390 |
+
self.q_proj = DenseGeneral(
|
| 391 |
+
in_shapes=(q_embed_dim,),
|
| 392 |
+
out_features=(num_query_heads, head_dim),
|
| 393 |
+
axis=(-1,),
|
| 394 |
+
)
|
| 395 |
+
self.k_proj = DenseGeneral(
|
| 396 |
+
in_shapes=(kv_embed_dim,),
|
| 397 |
+
out_features=(num_kv_heads, head_dim),
|
| 398 |
+
axis=(-1,),
|
| 399 |
+
)
|
| 400 |
+
self.v_proj = DenseGeneral(
|
| 401 |
+
in_shapes=(kv_embed_dim,),
|
| 402 |
+
out_features=(num_kv_heads, head_dim),
|
| 403 |
+
axis=(-1,),
|
| 404 |
+
)
|
| 405 |
+
self.o_proj = DenseGeneral(
|
| 406 |
+
in_shapes=(num_query_heads, head_dim),
|
| 407 |
+
out_features=(self.output_dim,),
|
| 408 |
+
axis=(-2, -1),
|
| 409 |
+
)
|
| 410 |
+
|
| 411 |
+
# --- Rotary Embedding ---
|
| 412 |
+
self.rotary_emb = RotaryEmbedding(
|
| 413 |
+
embedding_dims=self.head_dim,
|
| 414 |
+
min_timescale=config.model.rope_min_timescale,
|
| 415 |
+
max_timescale=config.model.rope_max_timescale,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
def forward(
|
| 419 |
+
self,
|
| 420 |
+
Xq: torch.Tensor, # (B, T, D) T = 1 in AR generation
|
| 421 |
+
q_positions: torch.Tensor, # (B, T),
|
| 422 |
+
Xkv: torch.Tensor = None, # (B, S)
|
| 423 |
+
kv_positions: torch.Tensor = None, # (B, S)
|
| 424 |
+
attn_mask: torch.Tensor = None, # None in Decoder self Attention, Valid mask in Others
|
| 425 |
+
cache: KVCache = None, # None in Encoder, KVCache in Decoder
|
| 426 |
+
is_causal: bool = False,
|
| 427 |
+
):
|
| 428 |
+
"""
|
| 429 |
+
Performs attention calculation with optional KV caching.
|
| 430 |
+
|
| 431 |
+
Args:
|
| 432 |
+
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
|
| 433 |
+
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
|
| 434 |
+
q_positions: Positions for queries (B, T).
|
| 435 |
+
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
|
| 436 |
+
attn_mask: Attention mask.
|
| 437 |
+
cache: KVCache.
|
| 438 |
+
|
| 439 |
+
Returns:
|
| 440 |
+
A tuple containing:
|
| 441 |
+
- output: The attention output tensor (B, T, output_dim).
|
| 442 |
+
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
|
| 443 |
+
"""
|
| 444 |
+
if kv_positions is None:
|
| 445 |
+
kv_positions = q_positions
|
| 446 |
+
original_dtype = Xq.dtype
|
| 447 |
+
|
| 448 |
+
Xq_BxTxNxH = self.q_proj(Xq)
|
| 449 |
+
Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
|
| 450 |
+
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
|
| 451 |
+
|
| 452 |
+
attn_k = None
|
| 453 |
+
attn_v = None
|
| 454 |
+
if cache is not None :
|
| 455 |
+
attn_k, attn_v = cache.k, cache.v
|
| 456 |
+
else :
|
| 457 |
+
attn_k = self.k_proj(Xkv)
|
| 458 |
+
attn_v = self.v_proj(Xkv)
|
| 459 |
+
attn_k = self.rotary_emb(attn_k, position=kv_positions)
|
| 460 |
+
attn_k = attn_k.transpose(1, 2)
|
| 461 |
+
attn_v = attn_v.transpose(1, 2)
|
| 462 |
+
|
| 463 |
+
attn_output = F.scaled_dot_product_attention(
|
| 464 |
+
Xq_BxNxTxH,
|
| 465 |
+
attn_k,
|
| 466 |
+
attn_v,
|
| 467 |
+
attn_mask=attn_mask if not is_causal else None,
|
| 468 |
+
scale=None,
|
| 469 |
+
enable_gqa=self.num_gqa_groups > 1,
|
| 470 |
+
is_causal=is_causal,
|
| 471 |
+
dropout_p=self.dropout_rate if self.training else 0.0
|
| 472 |
+
)
|
| 473 |
+
if self.output_attentions :
|
| 474 |
+
attn_weight = attn_output @ torch.linalg.pinv(attn_v)
|
| 475 |
+
|
| 476 |
+
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
|
| 477 |
+
output = self.o_proj(attn_output)
|
| 478 |
+
|
| 479 |
+
if self.output_attentions :
|
| 480 |
+
return output, attn_weight
|
| 481 |
+
return output.to(original_dtype)
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
class EncoderLayer(nn.Module):
|
| 485 |
+
"""Transformer Encoder Layer using DenseGeneral."""
|
| 486 |
+
|
| 487 |
+
def __init__(self, config):
|
| 488 |
+
super().__init__()
|
| 489 |
+
self.config = config
|
| 490 |
+
model_config = config.model
|
| 491 |
+
enc_config = config.model.encoder
|
| 492 |
+
embed_dim = enc_config.n_embd
|
| 493 |
+
|
| 494 |
+
# self.pre_sa_norm = RMSNorm(
|
| 495 |
+
# embed_dim,
|
| 496 |
+
# eps=model_config.normalization_layer_epsilon,
|
| 497 |
+
# dtype=torch.float32,
|
| 498 |
+
# )
|
| 499 |
+
self.pre_sa_norm = LlamaAdaptiveRMSNorm(
|
| 500 |
+
hidden_size=embed_dim, dim_cond=embed_dim
|
| 501 |
+
)
|
| 502 |
+
self.self_attention = selfAttention(
|
| 503 |
+
config,
|
| 504 |
+
q_embed_dim=embed_dim,
|
| 505 |
+
kv_embed_dim=embed_dim,
|
| 506 |
+
num_query_heads=enc_config.n_head,
|
| 507 |
+
num_kv_heads=enc_config.n_head,
|
| 508 |
+
head_dim=enc_config.head_dim,
|
| 509 |
+
is_cross_attn=False,
|
| 510 |
+
out_embed_dim=embed_dim,
|
| 511 |
+
)
|
| 512 |
+
# self.post_sa_norm = RMSNorm(
|
| 513 |
+
# embed_dim,
|
| 514 |
+
# eps=model_config.normalization_layer_epsilon,
|
| 515 |
+
# dtype=torch.float32,
|
| 516 |
+
# )
|
| 517 |
+
self.post_sa_norm = LlamaAdaptiveRMSNorm(
|
| 518 |
+
hidden_size=embed_dim, dim_cond=embed_dim
|
| 519 |
+
)
|
| 520 |
+
self.mlp = MlpBlock(embed_dim=embed_dim, intermediate_dim=enc_config.n_hidden)
|
| 521 |
+
self.dropout = nn.Dropout(config.model.dropout_rate)
|
| 522 |
+
|
| 523 |
+
def forward(
|
| 524 |
+
self,
|
| 525 |
+
x: torch.Tensor,
|
| 526 |
+
state: EncoderInferenceState,
|
| 527 |
+
cond_emb: torch.Tensor = None
|
| 528 |
+
) -> torch.Tensor:
|
| 529 |
+
|
| 530 |
+
residual = x
|
| 531 |
+
x_norm = self.pre_sa_norm(x, cond_embedding=cond_emb)
|
| 532 |
+
|
| 533 |
+
sa_out = self.self_attention(
|
| 534 |
+
X=x_norm,
|
| 535 |
+
q_positions=state.positions,
|
| 536 |
+
kv_positions=state.positions,
|
| 537 |
+
attn_mask=state.attn_mask,
|
| 538 |
+
)
|
| 539 |
+
x = residual + self.dropout(sa_out)
|
| 540 |
+
|
| 541 |
+
residual = x
|
| 542 |
+
x_norm = self.post_sa_norm(x, cond_embedding=cond_emb)
|
| 543 |
+
mlp_out = self.mlp(x_norm)
|
| 544 |
+
x = residual + self.dropout(mlp_out)
|
| 545 |
+
|
| 546 |
+
return x
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
class Decoder(nn.Module):
|
| 550 |
+
"""Transformer Decoder Stack using DenseGeneral."""
|
| 551 |
+
|
| 552 |
+
def __init__(self, config):
|
| 553 |
+
super().__init__()
|
| 554 |
+
self.config = config
|
| 555 |
+
model_config = config.model
|
| 556 |
+
dec_config = config.model.decoder
|
| 557 |
+
data_config = config.data
|
| 558 |
+
self.num_layers = dec_config.n_layer
|
| 559 |
+
|
| 560 |
+
# self.embeddings = nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd)
|
| 561 |
+
self.mask_ratio_generator = stats.truncnorm((config.model.mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25)
|
| 562 |
+
|
| 563 |
+
self.sep_emb = nn.Parameter(torch.zeros(1, 1, dec_config.n_embd))# nn.Embedding(1, dec_config.n_embd)
|
| 564 |
+
torch.nn.init.normal_(self.sep_emb, std=.02)
|
| 565 |
+
|
| 566 |
+
self.mask_emb = nn.Parameter(torch.zeros(1, config.model.inp_dim))# nn.Embedding(1, config.model.inp_dim)
|
| 567 |
+
torch.nn.init.normal_(self.mask_emb, std=.02)
|
| 568 |
+
|
| 569 |
+
self.embedding_dense = DenseGeneral(
|
| 570 |
+
in_shapes=(dec_config.inp_dim,),
|
| 571 |
+
out_features=(1, dec_config.n_embd),
|
| 572 |
+
axis=(-1,),
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
self.layers = nn.ModuleList(
|
| 576 |
+
[DecoderLayer(config=config) for _ in range(self.num_layers)]
|
| 577 |
+
)
|
| 578 |
+
|
| 579 |
+
# self.norm = RMSNorm(
|
| 580 |
+
# dec_config.n_embd,
|
| 581 |
+
# eps=model_config.normalization_layer_epsilon,
|
| 582 |
+
# dtype=torch.float32,
|
| 583 |
+
# )
|
| 584 |
+
self.norm = LlamaAdaptiveRMSNorm(
|
| 585 |
+
hidden_size=embed_dim, dim_cond=embed_dim
|
| 586 |
+
)
|
| 587 |
+
self.dropout = nn.Dropout(config.model.dropout_rate)
|
| 588 |
+
|
| 589 |
+
self.reconstructor = MlpBlock(
|
| 590 |
+
embed_dim=dec_config.n_embd,
|
| 591 |
+
intermediate_dim=dec_config.n_hidden,
|
| 592 |
+
out_dim = dec_config.inp_dim
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
def get_ids(self, text_input_ids, max_len, pad_value=1):
|
| 597 |
+
bs, seq_len = text_input_ids.size()
|
| 598 |
+
padding_size = max_len - seq_len
|
| 599 |
+
|
| 600 |
+
padding_tensor = torch.empty(bs, padding_size, device=text_input_ids.device).fill_(pad_value).long()
|
| 601 |
+
return torch.cat((text_input_ids, padding_tensor), dim=1)
|
| 602 |
+
|
| 603 |
+
def mask_prob(self, t):
|
| 604 |
+
return torch.sin(t * np.pi / 2).to(t.device)
|
| 605 |
+
|
| 606 |
+
def get_t(self, x0) :
|
| 607 |
+
t = torch.rand(x0.shape[0], device=x0.device, requires_grad=False)
|
| 608 |
+
t = torch.clamp(t, 1e-5, 1.0)
|
| 609 |
+
return t
|
| 610 |
+
|
| 611 |
+
def mask_tgt_embeddings(self, x0):
|
| 612 |
+
# x0: semantic tokens (B, T)
|
| 613 |
+
t = self.get_t(x0)
|
| 614 |
+
new_t = t
|
| 615 |
+
mask_prob = self.mask_prob(new_t) # (B,)
|
| 616 |
+
# if mask_prob[i] < 0.2, mask_prob[i] = 0.2
|
| 617 |
+
mask_prob = torch.where(
|
| 618 |
+
mask_prob < 0.2, torch.ones_like(mask_prob) * 0.2, mask_prob
|
| 619 |
+
)
|
| 620 |
+
# Add mask
|
| 621 |
+
target_mask = torch.bernoulli(torch.ones_like(x0[:, :, 0]) * mask_prob[..., None])
|
| 622 |
+
# mask = torch.cat((torch.zeros_like(prefix), target_mask), dim=1)
|
| 623 |
+
|
| 624 |
+
# mask
|
| 625 |
+
xt = x0.clone()
|
| 626 |
+
|
| 627 |
+
# replace by pad embedding
|
| 628 |
+
# pad_emb = self.mask_emb.repeat(x0.shape[0], x0.shape[1], 1).to(x0.dtype) #self.pad_emb(torch.zeros(1, dtype=torch.int32, device=x0.device)).squeeze(0) # torch.zeros(1, device=x0.device)
|
| 629 |
+
xt[(target_mask==1)] = self.mask_emb.to(xt.dtype)
|
| 630 |
+
|
| 631 |
+
return xt, target_mask
|
| 632 |
+
|
| 633 |
+
def random_masking(self, x, orders):
|
| 634 |
+
# generate token mask
|
| 635 |
+
bsz, seq_len, embed_dim = x.shape
|
| 636 |
+
mask_rate = self.mask_ratio_generator.rvs(1)[0]
|
| 637 |
+
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
|
| 638 |
+
mask = torch.zeros(bsz, seq_len, device=x.device)
|
| 639 |
+
mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens].to(x.device),
|
| 640 |
+
src=torch.ones(bsz, seq_len, device=x.device))
|
| 641 |
+
return mask.long()
|
| 642 |
+
def sample_orders(self, bsz, seq_len =32 ):
|
| 643 |
+
# generate a batch of random generation orders
|
| 644 |
+
orders = []
|
| 645 |
+
for _ in range(bsz):
|
| 646 |
+
order = np.array(list(range(seq_len)))
|
| 647 |
+
np.random.shuffle(order)
|
| 648 |
+
orders.append(order)
|
| 649 |
+
orders = torch.Tensor(np.array(orders)).long()
|
| 650 |
+
return orders
|
| 651 |
+
|
| 652 |
+
def mask_input(self, x) :
|
| 653 |
+
bs, seq_len, _ = x.size()
|
| 654 |
+
orders = self.sample_orders(bs,seq_len)
|
| 655 |
+
mask = self.random_masking(x, orders)
|
| 656 |
+
xt = x.clone()
|
| 657 |
+
xt[(mask==1)] = self.mask_emb.to(xt.dtype)
|
| 658 |
+
return xt, mask
|
| 659 |
+
|
| 660 |
+
def forward(
|
| 661 |
+
self,
|
| 662 |
+
enc_state: EncoderInferenceState,
|
| 663 |
+
enc_out: torch.Tensor,
|
| 664 |
+
quote_embs: torch.Tensor,
|
| 665 |
+
dec_in : torch.Tensor,
|
| 666 |
+
text_input_ids: torch.Tensor,
|
| 667 |
+
labels:torch.Tensor = None) -> torch.Tensor:
|
| 668 |
+
|
| 669 |
+
if self.training :
|
| 670 |
+
# x_orig = dec_in
|
| 671 |
+
# x, target_mask = self.mask_tgt_embeddings(dec_in)
|
| 672 |
+
x, target_mask = self.mask_input(dec_in)
|
| 673 |
+
# x = self.embedding_dense(x).squeeze(2)
|
| 674 |
+
|
| 675 |
+
else :
|
| 676 |
+
# x_orig = self.embedding_dense(dec_in).squeeze(2)
|
| 677 |
+
# full of pad tokens
|
| 678 |
+
# bs, seq_len, _ = dec_in.size()
|
| 679 |
+
# x = self.mask_emb.unsqueeze(1).repeat(bs, seq_len,1)
|
| 680 |
+
|
| 681 |
+
# x =
|
| 682 |
+
# x = self.embedding_dense(x.unsqueeze(1))#.squeeze(2)
|
| 683 |
+
# x = pad_emb.unsqueeze(1).expand(dec_in.size(0),dec_in.size(1),1)
|
| 684 |
+
target_mask=None
|
| 685 |
+
x = dec_in
|
| 686 |
+
|
| 687 |
+
x = self.embedding_dense(x).squeeze(2)
|
| 688 |
+
|
| 689 |
+
# sep_emb = self.sep_emb(torch.zeros(1, dtype=torch.int32, device=dec_in.device)).expand(dec_in.size(0), 1, -1)
|
| 690 |
+
|
| 691 |
+
x = torch.cat((quote_embs, self.sep_emb.repeat(x.size(0), 1,1).to(x.dtype), x), dim = 1)
|
| 692 |
+
|
| 693 |
+
dec_in_dummy = self.get_ids(text_input_ids, max_len = x.size(1))
|
| 694 |
+
# print(dec_in_dummy)
|
| 695 |
+
state = DecoderInferenceState.new(
|
| 696 |
+
self.config, enc_state, enc_out, dec_in_dummy
|
| 697 |
+
)
|
| 698 |
+
# print(state.attn_mask[1,0, 8:, 8:])
|
| 699 |
+
cross_attentions = ()
|
| 700 |
+
for i, layer in enumerate(self.layers):
|
| 701 |
+
x, cattns = layer(x, state)
|
| 702 |
+
cross_attentions += (cattns,)
|
| 703 |
+
|
| 704 |
+
# Final Norm
|
| 705 |
+
x = self.norm(x)
|
| 706 |
+
# print(x[:,-32:].size())
|
| 707 |
+
|
| 708 |
+
# reconstructed_input = self.reconstructor(self.dropout(x[:,-32:]).unsqueeze(1))
|
| 709 |
+
reconstructed_input = self.reconstructor(self.dropout(x[:,-32:])).squeeze(2)
|
| 710 |
+
|
| 711 |
+
if self.training :
|
| 712 |
+
loss1 = F.mse_loss(
|
| 713 |
+
reconstructed_input[:,-32:][(target_mask==1)],
|
| 714 |
+
dec_in[(target_mask==1)],
|
| 715 |
+
reduction="mean",
|
| 716 |
+
)
|
| 717 |
+
loss2 = F.l1_loss(
|
| 718 |
+
reconstructed_input[:,-32:][(target_mask==1)],
|
| 719 |
+
dec_in[(target_mask==1)],
|
| 720 |
+
reduction="mean",
|
| 721 |
+
)
|
| 722 |
+
mask_loss = loss1 + loss2
|
| 723 |
+
else :
|
| 724 |
+
if labels is not None :
|
| 725 |
+
loss1 = F.mse_loss(
|
| 726 |
+
reconstructed_input[:,-32:],
|
| 727 |
+
labels,
|
| 728 |
+
reduction="mean",
|
| 729 |
+
)
|
| 730 |
+
loss2 = F.l1_loss(
|
| 731 |
+
reconstructed_input[:,-32:],
|
| 732 |
+
labels,
|
| 733 |
+
reduction="mean",
|
| 734 |
+
)
|
| 735 |
+
mask_loss = loss1 + loss2
|
| 736 |
+
else :
|
| 737 |
+
mask_loss = None
|
| 738 |
+
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
out = QuoteTTSOutput(
|
| 742 |
+
logits=x,
|
| 743 |
+
mask_loss=mask_loss,
|
| 744 |
+
cross_attentions=cross_attentions,
|
| 745 |
+
expressive_latents=reconstructed_input,
|
| 746 |
+
target_mask=target_mask)#, kl_div_loss=loss_kl, mu=mu, logvar=logvar)
|
| 747 |
+
return out
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
class Encoder(nn.Module):
|
| 751 |
+
"""Transformer Decoder Stack using DenseGeneral."""
|
| 752 |
+
|
| 753 |
+
def __init__(self, config):
|
| 754 |
+
super().__init__()
|
| 755 |
+
self.config = config
|
| 756 |
+
model_config = config.model
|
| 757 |
+
dec_config = config.model.decoder
|
| 758 |
+
data_config = config.data
|
| 759 |
+
self.num_layers = dec_config.n_layer
|
| 760 |
+
|
| 761 |
+
# self.embeddings = nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd)
|
| 762 |
+
|
| 763 |
+
# self.embedding_dense = DenseGeneral(
|
| 764 |
+
# in_shapes=(dec_config.inp_dim,),
|
| 765 |
+
# out_features=(1, dec_config.n_embd),
|
| 766 |
+
# axis=(-1,),
|
| 767 |
+
# )
|
| 768 |
+
self.embedding_dense = nn.Linear(dec_config.inp_dim, dec_config.n_embd, bias=True)
|
| 769 |
+
torch.nn.init.xavier_uniform_(self.embedding_dense.weight)
|
| 770 |
+
torch.nn.init.constant_(self.embedding_dense.bias, 0)
|
| 771 |
+
|
| 772 |
+
self.sep_emb = nn.Parameter(torch.zeros(1, 1, dec_config.n_embd))# nn.Embedding(1, dec_config.n_embd)
|
| 773 |
+
torch.nn.init.normal_(self.sep_emb, std=.02)
|
| 774 |
+
|
| 775 |
+
# self.z_proj_ln = nn.LayerNorm(dec_config.n_embd, eps=1e-6)
|
| 776 |
+
# self.encoder_pos_embed_learned = nn.Embedding(1024, dec_config.n_embd)
|
| 777 |
+
# torch.nn.init.normal_(self.encoder_pos_embed_learned.weight.data, std=.02)
|
| 778 |
+
|
| 779 |
+
# self.ref_dense = DenseGeneral(
|
| 780 |
+
# in_shapes=(dec_config.inp_dim * 32,),
|
| 781 |
+
# out_features=(1, dec_config.n_embd),
|
| 782 |
+
# axis=(-1,),
|
| 783 |
+
# )
|
| 784 |
+
# self.embedding_dense = IdentityConvNeXtV2(in_chans=1, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], num_classes=1024)
|
| 785 |
+
|
| 786 |
+
self.layers = nn.ModuleList(
|
| 787 |
+
[EncoderLayer(config=config) for _ in range(self.num_layers)]
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
# self.norm = RMSNorm(
|
| 791 |
+
# dec_config.n_embd,
|
| 792 |
+
# eps=model_config.normalization_layer_epsilon,
|
| 793 |
+
# dtype=torch.float32,
|
| 794 |
+
# )
|
| 795 |
+
self.norm = LlamaAdaptiveRMSNorm(
|
| 796 |
+
hidden_size=embed_dim, dim_cond=embed_dim
|
| 797 |
+
)
|
| 798 |
+
self.dropout = nn.Dropout(config.model.dropout_rate)
|
| 799 |
+
|
| 800 |
+
def get_ids(self, text_input_ids, max_len, pad_value=1):
|
| 801 |
+
bs, seq_len = text_input_ids.size()
|
| 802 |
+
padding_size = max_len - seq_len
|
| 803 |
+
|
| 804 |
+
padding_tensor = torch.empty(bs, padding_size, device=text_input_ids.device).fill_(pad_value).long()
|
| 805 |
+
return torch.cat((text_input_ids, padding_tensor), dim=1)
|
| 806 |
+
|
| 807 |
+
def forward(
|
| 808 |
+
self,
|
| 809 |
+
context_embs: torch.Tensor,
|
| 810 |
+
audio_in : torch.Tensor,
|
| 811 |
+
ref_in : torch.Tensor,
|
| 812 |
+
text_input_ids: torch.Tensor,
|
| 813 |
+
mask: torch.Tensor) -> torch.Tensor:
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
bsz, seq_len, embed_dim = context_embs.shape
|
| 817 |
+
|
| 818 |
+
x = self.embedding_dense(audio_in).squeeze(2)
|
| 819 |
+
# ref_x = self.ref_dense(ref_in.view(x.size(0), -1)).squeeze(2)
|
| 820 |
+
# print(context_embs.size(), x.size())
|
| 821 |
+
x = torch.cat((context_embs, self.sep_emb.repeat(bsz, 1,1).to(x.dtype), x), dim = 1)
|
| 822 |
+
# x = x + ref_x
|
| 823 |
+
|
| 824 |
+
mask_with_buffer = torch.cat([torch.zeros(bsz, seq_len + 1, device=x.device), mask], dim=1)
|
| 825 |
+
|
| 826 |
+
# positional embeddings to let the model know the initial positions
|
| 827 |
+
# positions = torch.arange(x.size(1), device=x.device).unsqueeze(0).repeat(bsz,1).long()
|
| 828 |
+
# x = x + self.encoder_pos_embed_learned(positions)
|
| 829 |
+
# x = self.z_proj_ln(x)
|
| 830 |
+
|
| 831 |
+
# dropping
|
| 832 |
+
x = x[(1-mask_with_buffer).nonzero(as_tuple=True)].reshape(bsz, -1, embed_dim)
|
| 833 |
+
|
| 834 |
+
# state
|
| 835 |
+
enc_in_dummy = self.get_ids(text_input_ids, max_len = x.size(1))
|
| 836 |
+
state = EncoderInferenceState.new(
|
| 837 |
+
self.config, enc_in_dummy
|
| 838 |
+
)
|
| 839 |
+
# print(state.attn_mask[1,0, 8:, 8:])
|
| 840 |
+
# cross_attentions = ()
|
| 841 |
+
for i, layer in enumerate(self.layers):
|
| 842 |
+
x = layer(x, state)
|
| 843 |
+
# cross_attentions += (cattns,)
|
| 844 |
+
|
| 845 |
+
# Final Norm
|
| 846 |
+
x = self.norm(x)
|
| 847 |
+
# reconstructed_input = self.reconstructor(self.dropout(x[:,-32:])).squeeze(2)
|
| 848 |
+
|
| 849 |
+
# gt_latents = audio_in.clone().detach()
|
| 850 |
+
# x = x[:,-32:] + self.diffusion_pos_embed_learned
|
| 851 |
+
|
| 852 |
+
# loss = self.forward_loss(x, gt_latents, target_mask)
|
| 853 |
+
|
| 854 |
+
# out = QuoteTTSOutput(
|
| 855 |
+
# logits=x,
|
| 856 |
+
# mask_loss=None,
|
| 857 |
+
# expressive_latents=None)
|
| 858 |
+
#, kl_div_loss=loss_kl, mu=mu, logvar=logvar)
|
| 859 |
+
return x
|
| 860 |
+
|
| 861 |
+
|
| 862 |
+
class MaskedEncoder(nn.Module):
|
| 863 |
+
"""Transformer Decoder Stack using DenseGeneral."""
|
| 864 |
+
|
| 865 |
+
def __init__(self, config):
|
| 866 |
+
super().__init__()
|
| 867 |
+
self.config = config
|
| 868 |
+
model_config = config.model
|
| 869 |
+
dec_config = config.model.decoder
|
| 870 |
+
data_config = config.data
|
| 871 |
+
self.num_layers = dec_config.n_layer
|
| 872 |
+
|
| 873 |
+
# self.embeddings = nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd)
|
| 874 |
+
self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_config.n_embd))# nn.Embedding(1, config.model.inp_dim)
|
| 875 |
+
torch.nn.init.normal_(self.mask_token, std=.02)
|
| 876 |
+
|
| 877 |
+
# self.embedding_dense = DenseGeneral(
|
| 878 |
+
# in_shapes=(dec_config.n_embd,),
|
| 879 |
+
# out_features=(1, dec_config.n_embd),
|
| 880 |
+
# axis=(-1,),
|
| 881 |
+
# )
|
| 882 |
+
self.embedding_dense = nn.Linear(dec_config.inp_dim, dec_config.n_embd, bias=True)
|
| 883 |
+
torch.nn.init.xavier_uniform_(self.embedding_dense.weight)
|
| 884 |
+
torch.nn.init.constant_(self.embedding_dense.bias, 0)
|
| 885 |
+
|
| 886 |
+
self.layers = nn.ModuleList(
|
| 887 |
+
[EncoderLayer(config=config) for _ in range(self.num_layers)]
|
| 888 |
+
)
|
| 889 |
+
|
| 890 |
+
# self.norm = RMSNorm(
|
| 891 |
+
# dec_config.n_embd,
|
| 892 |
+
# eps=model_config.normalization_layer_epsilon,
|
| 893 |
+
# dtype=torch.float32,
|
| 894 |
+
# )
|
| 895 |
+
self.norm = LlamaAdaptiveRMSNorm(
|
| 896 |
+
hidden_size=dec_config.n_embd, dim_cond=dec_config.n_embd
|
| 897 |
+
)
|
| 898 |
+
# self.decoder_pos_embed_learned = nn.Embedding(1024, dec_config.n_embd)
|
| 899 |
+
# torch.nn.init.normal_(self.decoder_pos_embed_learned.weight.data, std=.02)
|
| 900 |
+
|
| 901 |
+
# self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, 32, config.model.decoder.n_embd))
|
| 902 |
+
# torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)
|
| 903 |
+
|
| 904 |
+
def get_ids(self, text_input_ids, max_len, pad_value=1):
|
| 905 |
+
bs, seq_len = text_input_ids.size()
|
| 906 |
+
padding_size = max_len - seq_len
|
| 907 |
+
|
| 908 |
+
padding_tensor = torch.empty(bs, padding_size, device=text_input_ids.device).fill_(pad_value).long()
|
| 909 |
+
return torch.cat((text_input_ids, padding_tensor), dim=1)
|
| 910 |
+
|
| 911 |
+
def forward(
|
| 912 |
+
self,
|
| 913 |
+
audio_in: torch.Tensor,
|
| 914 |
+
context_embs: torch.Tensor,
|
| 915 |
+
mask: torch.Tensor,
|
| 916 |
+
text_input_ids : torch.Tensor,
|
| 917 |
+
cond_emb: torch.Tensor) -> torch.Tensor:
|
| 918 |
+
|
| 919 |
+
bsz, seq_len = text_input_ids.shape
|
| 920 |
+
|
| 921 |
+
x = self.embedding_dense(audio_in).squeeze(2)
|
| 922 |
+
|
| 923 |
+
mask_with_buffer = torch.cat([torch.zeros(bsz, seq_len, device=x.device), mask], dim=1)
|
| 924 |
+
|
| 925 |
+
# mask tokens
|
| 926 |
+
x = torch.cat((context_embs, x), dim = 1)
|
| 927 |
+
# mask target tokens
|
| 928 |
+
x[(mask_with_buffer).nonzero(as_tuple=True)] = self.mask_token.to(x.dtype)
|
| 929 |
+
|
| 930 |
+
# positions = torch.arange(x_after_pad.size(1), device=x_after_pad.device).unsqueeze(0).repeat(bsz,1).long()
|
| 931 |
+
# x = x_after_pad + self.decoder_pos_embed_learned(positions)
|
| 932 |
+
|
| 933 |
+
# avoid attending to pad tokens
|
| 934 |
+
enc_in_dummy = self.get_ids(text_input_ids, max_len = x.size(1))
|
| 935 |
+
state = EncoderInferenceState.new(
|
| 936 |
+
self.config, enc_in_dummy
|
| 937 |
+
)
|
| 938 |
+
# print(state.attn_mask[1,0, 8:, 8:])
|
| 939 |
+
# cross_attentions = ()
|
| 940 |
+
for i, layer in enumerate(self.layers):
|
| 941 |
+
x = layer(x, state, cond_emb=cond_emb)
|
| 942 |
+
# cross_attentions += (cattns,)
|
| 943 |
+
|
| 944 |
+
# Final Norm
|
| 945 |
+
x = self.norm(x, cond_embedding=cond_emb)
|
| 946 |
+
# reconstructed_input = self.reconstructor(self.dropout(x[:,-32:])).squeeze(2)
|
| 947 |
+
|
| 948 |
+
x = x[:,-32:]
|
| 949 |
+
# x = x + self.diffusion_pos_embed_learned
|
| 950 |
+
|
| 951 |
+
# loss = self.forward_loss(x, gt_latents, target_mask)
|
| 952 |
+
|
| 953 |
+
# out = QuoteTTSOutput(
|
| 954 |
+
# logits=x,
|
| 955 |
+
# mask_loss=loss,
|
| 956 |
+
# expressive_latents=None)
|
| 957 |
+
#, kl_div_loss=loss_kl, mu=mu, logvar=logvar)
|
| 958 |
+
return x
|
| 959 |
+
|
| 960 |
+
class EncoderDecoder(
|
| 961 |
+
nn.Module,
|
| 962 |
+
):
|
| 963 |
+
def __init__(self, config):
|
| 964 |
+
super().__init__()
|
| 965 |
+
self.config = config
|
| 966 |
+
self.mask_ratio_generator = stats.truncnorm((config.model.mask_ratio_min - 1.0) / 0.25, 0, loc=1.0, scale=0.25)
|
| 967 |
+
|
| 968 |
+
# self.encoder = T5Encoder.from_pretrained(config.model.base_encoder_path, config.model.ft_encoder_path).encoder
|
| 969 |
+
self.context_encoder = T5EncoderModel.from_pretrained(config.model.base_encoder_path)
|
| 970 |
+
for p in self.context_encoder.parameters():
|
| 971 |
+
p.requires_grad = False
|
| 972 |
+
self.context_encoder = self.context_encoder.eval()
|
| 973 |
+
|
| 974 |
+
# self.encoder = Encoder(config)
|
| 975 |
+
self.decoder = MaskedEncoder(config)
|
| 976 |
+
|
| 977 |
+
self.diffloss = DiffLoss(
|
| 978 |
+
target_channels=config.model.inp_dim,
|
| 979 |
+
z_channels=1024,
|
| 980 |
+
width=1024,
|
| 981 |
+
depth=8,
|
| 982 |
+
num_sampling_steps='100',
|
| 983 |
+
grad_checkpointing=False
|
| 984 |
+
)
|
| 985 |
+
|
| 986 |
+
self.mask_step_embedding = SinusoidalPosEmb(config.model.decoder.n_embd)
|
| 987 |
+
self.mask_step_mlp = nn.Sequential(
|
| 988 |
+
nn.Linear(config.model.decoder.n_embd, config.model.decoder.n_embd * 4),
|
| 989 |
+
nn.SiLU(),
|
| 990 |
+
nn.Linear(config.model.decoder.n_embd * 4, config.model.decoder.n_embd),
|
| 991 |
+
)
|
| 992 |
+
|
| 993 |
+
# self.post_ln = nn.LayerNorm(config.model.decoder.n_embd)
|
| 994 |
+
|
| 995 |
+
# self.ref_dense = nn.Linear(config.model.inp_dim, config.model.decoder.n_embd, bias=True)
|
| 996 |
+
# torch.nn.init.xavier_uniform_(self.ref_dense.weight)
|
| 997 |
+
# torch.nn.init.constant_(self.ref_dense.bias, 0)
|
| 998 |
+
|
| 999 |
+
def random_masking(self, x, orders):
|
| 1000 |
+
# generate token mask
|
| 1001 |
+
bsz, seq_len, embed_dim = x.shape
|
| 1002 |
+
mask_rate = self.mask_ratio_generator.rvs(1)[0]
|
| 1003 |
+
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
|
| 1004 |
+
mask = torch.zeros(bsz, seq_len, device=x.device)
|
| 1005 |
+
mask = torch.scatter(mask, dim=-1, index=orders[:, :num_masked_tokens].to(x.device),
|
| 1006 |
+
src=torch.ones(bsz, seq_len, device=x.device))
|
| 1007 |
+
return mask.long()
|
| 1008 |
+
|
| 1009 |
+
def sample_orders(self, bsz, seq_len =32 ):
|
| 1010 |
+
# generate a batch of random generation orders
|
| 1011 |
+
orders = []
|
| 1012 |
+
for _ in range(bsz):
|
| 1013 |
+
order = np.array(list(range(seq_len)))
|
| 1014 |
+
np.random.shuffle(order)
|
| 1015 |
+
orders.append(order)
|
| 1016 |
+
orders = torch.Tensor(np.array(orders)).long()
|
| 1017 |
+
return orders
|
| 1018 |
+
|
| 1019 |
+
# def mask_input(self, x) :
|
| 1020 |
+
# bs, seq_len, _ = x.size()
|
| 1021 |
+
# orders = self.sample_orders(bs,seq_len)
|
| 1022 |
+
# mask = self.random_masking(x, orders)
|
| 1023 |
+
# # xt = x.clone()
|
| 1024 |
+
# # xt[(mask==1)] = self.mask_emb.to(xt.dtype)
|
| 1025 |
+
# return mask
|
| 1026 |
+
|
| 1027 |
+
# def sample_orders(self, bsz, seq_len =32 ):
|
| 1028 |
+
# # generate a batch of random generation orders
|
| 1029 |
+
# orders = torch.arange(seq_len).unsqueeze(0).repeat(bsz,1)
|
| 1030 |
+
# return orders
|
| 1031 |
+
|
| 1032 |
+
def mask_prob(self, t):
|
| 1033 |
+
return torch.sin(t * np.pi / 2).to(t.device)
|
| 1034 |
+
|
| 1035 |
+
def get_mask(self, bsz, device, seq_len=32) :
|
| 1036 |
+
t = torch.rand(bsz, device=device, requires_grad=False)
|
| 1037 |
+
t = torch.clamp(t, 1e-5, 1.0)
|
| 1038 |
+
mask_prob = self.mask_prob(t)
|
| 1039 |
+
mask_prob = torch.where(
|
| 1040 |
+
mask_prob < 0.2, torch.ones_like(mask_prob) * 0.2, mask_prob
|
| 1041 |
+
)
|
| 1042 |
+
mask = torch.bernoulli(torch.ones(bsz, seq_len, device=device) * mask_prob[..., None]).long()
|
| 1043 |
+
|
| 1044 |
+
# bs, seq_len, _ = x.size()
|
| 1045 |
+
# orders = self.sample_orders(bs,seq_len)
|
| 1046 |
+
# mask = self.random_masking(x, orders)
|
| 1047 |
+
# xt = x.clone()
|
| 1048 |
+
# xt[(mask==1)] = self.mask_emb.to(xt.dtype)
|
| 1049 |
+
return t, mask
|
| 1050 |
+
|
| 1051 |
+
def forward_loss(self, z, target, mask, diffusion_batch_mul=4):
|
| 1052 |
+
bsz, seq_len, _ = target.shape
|
| 1053 |
+
target = target.reshape(bsz * seq_len, -1).repeat(diffusion_batch_mul, 1)
|
| 1054 |
+
z = z.reshape(bsz*seq_len, -1).repeat(diffusion_batch_mul, 1)
|
| 1055 |
+
mask = mask.reshape(bsz*seq_len).repeat(diffusion_batch_mul)
|
| 1056 |
+
loss = self.diffloss(z=z, target=target, mask=mask)
|
| 1057 |
+
return loss
|
| 1058 |
+
|
| 1059 |
+
def get_diff_t(self, x) :
|
| 1060 |
+
# 32 is sequence length here
|
| 1061 |
+
return torch.randint(0, self.diffloss.train_diffusion.num_timesteps, (x.shape[0] * 32, ), device=x.device)
|
| 1062 |
+
|
| 1063 |
+
def _forward(
|
| 1064 |
+
self,
|
| 1065 |
+
context: torch.Tensor,
|
| 1066 |
+
quote: torch.Tensor,
|
| 1067 |
+
dec_in_ref: torch.Tensor,
|
| 1068 |
+
transformer_in : torch.Tensor,
|
| 1069 |
+
dec_in_tgt: torch.Tensor,
|
| 1070 |
+
labels: torch.Tensor = None
|
| 1071 |
+
) :
|
| 1072 |
+
|
| 1073 |
+
bsz, _ = context.size()
|
| 1074 |
+
|
| 1075 |
+
# diffusion step embedding
|
| 1076 |
+
# diff_t = self.get_diff_t(context)
|
| 1077 |
+
# diffusion_step_emb = self.diff_step_embedding(diff_t)
|
| 1078 |
+
# diffusion_step_emb = self.diff_step_mlp(diffusion_step_emb).reshape(bsz, 32, -1)
|
| 1079 |
+
|
| 1080 |
+
# mask step embedding
|
| 1081 |
+
mask_t, mask = self.get_mask(bsz, device=context.device)
|
| 1082 |
+
mask_perc_emb = self.mask_step_embedding(mask_t)
|
| 1083 |
+
mask_perc_emb = self.mask_step_mlp(mask_perc_emb)
|
| 1084 |
+
|
| 1085 |
+
|
| 1086 |
+
enc_state = EncoderInferenceState.new(self.context_encoder.config, context)
|
| 1087 |
+
enc_out = self.context_encoder(input_ids=context,attention_mask=enc_state.padding_mask).last_hidden_state
|
| 1088 |
+
|
| 1089 |
+
# quote_embs = self.get_quote_embs(quote)
|
| 1090 |
+
|
| 1091 |
+
# mask = self.mask_input(transformer_in)
|
| 1092 |
+
# x = self.encoder(enc_out, transformer_in, dec_in_ref, context, mask)
|
| 1093 |
+
z = self.decoder(
|
| 1094 |
+
transformer_in,
|
| 1095 |
+
enc_out,
|
| 1096 |
+
mask,
|
| 1097 |
+
context,
|
| 1098 |
+
cond_emb=mask_perc_emb)
|
| 1099 |
+
|
| 1100 |
+
# Reference latents
|
| 1101 |
+
# z_ref = self.post_ln(self.ref_dense(dec_in_ref) + quote_embs)
|
| 1102 |
+
|
| 1103 |
+
# z = torch.cat((z, z_ref), dim = -1)
|
| 1104 |
+
# print(t.size())
|
| 1105 |
+
gt_latents = transformer_in.clone().detach()
|
| 1106 |
+
loss = self.forward_loss(z, gt_latents, mask)
|
| 1107 |
+
|
| 1108 |
+
out = QuoteTTSOutput(
|
| 1109 |
+
logits=z,
|
| 1110 |
+
loss=loss,
|
| 1111 |
+
expressive_latents=None)
|
| 1112 |
+
return out
|
| 1113 |
+
|
| 1114 |
+
|
| 1115 |
+
def forward(
|
| 1116 |
+
self,
|
| 1117 |
+
context: torch.Tensor,
|
| 1118 |
+
quote: torch.Tensor,
|
| 1119 |
+
dec_in_ref: torch.Tensor,
|
| 1120 |
+
transformer_in: torch.Tensor = None,
|
| 1121 |
+
dec_in_tgt: torch.Tensor = None,
|
| 1122 |
+
labels: torch.Tensor = None):
|
| 1123 |
+
# if self.training :
|
| 1124 |
+
# if self.eval :
|
| 1125 |
+
# print(labels[0])
|
| 1126 |
+
if self.training :
|
| 1127 |
+
return self._forward(
|
| 1128 |
+
context=context,
|
| 1129 |
+
quote=quote,
|
| 1130 |
+
dec_in_ref=dec_in_ref,
|
| 1131 |
+
dec_in_tgt=dec_in_tgt,
|
| 1132 |
+
transformer_in=transformer_in,
|
| 1133 |
+
labels=labels)
|
| 1134 |
+
else :
|
| 1135 |
+
samples, z = self.sample_tokens(context, quote, dec_in_ref, num_iter=1)
|
| 1136 |
+
# print(samples)
|
| 1137 |
+
mask = torch.ones(z.size(0), z.size(1), device=context.device).long()
|
| 1138 |
+
# print(z.size())
|
| 1139 |
+
loss = self.forward_loss(z, transformer_in, mask, diffusion_batch_mul=1)
|
| 1140 |
+
|
| 1141 |
+
out = QuoteTTSOutput(
|
| 1142 |
+
logits=samples,
|
| 1143 |
+
loss=loss,
|
| 1144 |
+
labels=transformer_in)
|
| 1145 |
+
return out
|
| 1146 |
+
|
| 1147 |
+
@classmethod
|
| 1148 |
+
def from_pretrained(cls, path: str, config_path: str= None):
|
| 1149 |
+
if config_path:
|
| 1150 |
+
with open(config_path) as f :
|
| 1151 |
+
config = yaml.safe_load(f)
|
| 1152 |
+
else :
|
| 1153 |
+
config = Config()
|
| 1154 |
+
|
| 1155 |
+
model = cls(config)
|
| 1156 |
+
model.load_state_dict(torch.load(os.path.join(path, "pytorch_model.bin"), map_location="cpu"))
|
| 1157 |
+
return model
|
| 1158 |
+
|
| 1159 |
+
# @torch.no_grad()
|
| 1160 |
+
# def sample_all(self, context, quote,num_iter=10, seq_len=32):
|
| 1161 |
+
# expressive_latents = self.sample_tokens(context,quote,num_iter,seq_len)
|
| 1162 |
+
# out = self.decoder()
|
| 1163 |
+
|
| 1164 |
+
@torch.no_grad()
|
| 1165 |
+
def sample_tokens(self, context, quote, dec_in_ref, num_iter=10, seq_len=32, temperature=1.0):
|
| 1166 |
+
|
| 1167 |
+
bsz = context.size(0)
|
| 1168 |
+
enc_state = EncoderInferenceState.new(self.context_encoder.config, context)
|
| 1169 |
+
enc_out = self.context_encoder(input_ids=context,attention_mask=enc_state.padding_mask).last_hidden_state
|
| 1170 |
+
|
| 1171 |
+
# enc_state_ = EncoderInferenceState.new(self.context_encoder.config, quote)
|
| 1172 |
+
# quote_embs = self.context_encoder(input_ids=quote, attention_mask=enc_state_.padding_mask).last_hidden_state
|
| 1173 |
+
# quote_embs = quote_embs.mean(1, keepdims=True)
|
| 1174 |
+
# quote_embs = self.get_quote_embs(quote)
|
| 1175 |
+
|
| 1176 |
+
# ref latents
|
| 1177 |
+
# z_ref = self.post_ln(self.ref_dense(dec_in_ref) + quote_embs)
|
| 1178 |
+
|
| 1179 |
+
# init and sample generation orders
|
| 1180 |
+
tokens = torch.zeros(bsz, seq_len, dec_in_ref.size(2), device=context.device)#.repeat(bsz, seq_len, 1)
|
| 1181 |
+
# dec_in = torch.zeros(bsz, seq_len, self.config.model.decoder.n_embed).cuda()
|
| 1182 |
+
mask = torch.ones(bsz, seq_len, device=context.device)
|
| 1183 |
+
orders = self.sample_orders(bsz)
|
| 1184 |
+
|
| 1185 |
+
# indices = list(range(num_iter))
|
| 1186 |
+
h = 1.0/num_iter
|
| 1187 |
+
t_list = [1.0 - i * h for i in range(num_iter)]
|
| 1188 |
+
t_list.append(0.0)
|
| 1189 |
+
|
| 1190 |
+
# generate latents
|
| 1191 |
+
for step in range(num_iter):
|
| 1192 |
+
cur_tokens = tokens.clone()
|
| 1193 |
+
t = t_list[step] * torch.ones(bsz).to(mask.device)
|
| 1194 |
+
mask_perc_emb = self.mask_step_embedding(t)
|
| 1195 |
+
mask_perc_emb = self.mask_step_mlp(mask_perc_emb)
|
| 1196 |
+
# print(tokens[0])
|
| 1197 |
+
# print(curr_t
|
| 1198 |
+
# x = self.encoder(enc_out, cur_tokens, dec_in_ref, context, mask)
|
| 1199 |
+
z = self.decoder(cur_tokens, enc_out, mask, context, cond_emb=mask_perc_emb)
|
| 1200 |
+
|
| 1201 |
+
# mask ratio for the next round, following MaskGIT and MAGE.
|
| 1202 |
+
mask_ratio = torch.Tensor([t_list[step+1]]).to(context.device) #* torch.ones(bsz).to(mask.device)#np.cos(math.pi / 2. * (step + 1) / num_iter)
|
| 1203 |
+
# print(mask_ratio)
|
| 1204 |
+
# mask_len = torch.Tensor([np.floor(seq_len * mask_ratio)]).to(cur_tokens.device)
|
| 1205 |
+
mask_len = (self.mask_prob(mask_ratio) * seq_len).long()
|
| 1206 |
+
|
| 1207 |
+
# masks out at least one for the next iteration
|
| 1208 |
+
mask_len = torch.maximum(torch.Tensor([1]).to(context.device),
|
| 1209 |
+
torch.minimum(torch.sum(mask, dim=-1, keepdims=True) - 1, mask_len))
|
| 1210 |
+
|
| 1211 |
+
# get masking for next iteration and locations to be predicted in this iteration
|
| 1212 |
+
mask_next = mask_by_order(mask_len[0], orders, bsz, seq_len).to(cur_tokens.device)
|
| 1213 |
+
if step >= num_iter - 1:
|
| 1214 |
+
mask_to_pred = mask[:bsz].bool()
|
| 1215 |
+
else:
|
| 1216 |
+
mask_to_pred = torch.logical_xor(mask[:bsz].bool(), mask_next.bool())
|
| 1217 |
+
mask = mask_next
|
| 1218 |
+
# z = torch.cat((z, z_ref), dim = -1)
|
| 1219 |
+
full_z = z.clone()
|
| 1220 |
+
z = z[mask_to_pred.nonzero(as_tuple=True)]
|
| 1221 |
+
# sample token latents for this step
|
| 1222 |
+
# samples = out.expressive_latents[mask_to_pred.nonzero(as_tuple=True)]
|
| 1223 |
+
sampled_token_latent = self.diffloss.sample(z, temperature, cfg=1.0)
|
| 1224 |
+
cur_tokens[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
|
| 1225 |
+
tokens = cur_tokens.clone()
|
| 1226 |
+
# print(tokens[0,0])
|
| 1227 |
+
return tokens, full_z
|
| 1228 |
+
|
| 1229 |
+
def mask_by_order(mask_len, order, bsz, seq_len):
|
| 1230 |
+
masking = torch.zeros(bsz, seq_len)
|
| 1231 |
+
masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len)).bool()
|
| 1232 |
+
return masking
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
def top_p_sample(logits, thres=0.9):
|
| 1236 |
+
k = math.ceil((1 - thres) * logits.shape[-1])
|
| 1237 |
+
val, ind = logits.topk(k, dim=-1)
|
| 1238 |
+
probs = torch.full_like(logits, float("-inf"))
|
| 1239 |
+
probs.scatter_(2, ind, val)
|
| 1240 |
+
return probs
|
| 1241 |
+
|
| 1242 |
+
|
| 1243 |
+
def log(t, eps=1e-10):
|
| 1244 |
+
return torch.log(t + eps)
|
| 1245 |
+
|
| 1246 |
+
|
| 1247 |
+
def gumbel_noise(t):
|
| 1248 |
+
noise = torch.zeros_like(t).uniform_(0, 1)
|
| 1249 |
+
return -log(-log(noise))
|
| 1250 |
+
|
| 1251 |
+
|
| 1252 |
+
def gumbel_sample(t, temperature=1.0, dim=-1):
|
| 1253 |
+
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
|
| 1254 |
+
|
| 1255 |
+
|
| 1256 |
+
def apply_top_k_only(
|
| 1257 |
+
logits: torch.Tensor,
|
| 1258 |
+
k: torch.Tensor,
|
| 1259 |
+
) -> torch.Tensor:
|
| 1260 |
+
"""
|
| 1261 |
+
Apply top-k mask to the logits.
|
| 1262 |
+
|
| 1263 |
+
This implementation doesn't involve sorting the entire vocab.
|
| 1264 |
+
|
| 1265 |
+
The logits tensor may be updated in-place.
|
| 1266 |
+
"""
|
| 1267 |
+
no_top_k_mask = k == logits.shape[1]
|
| 1268 |
+
# Set non-top-k rows to 1 so that we can gather.
|
| 1269 |
+
k = k.masked_fill(no_top_k_mask, 1)
|
| 1270 |
+
max_top_k = k.max()
|
| 1271 |
+
# topk.values tensor has shape [batch_size, max_top_k].
|
| 1272 |
+
# Convert top k to 0-based index in range [0, max_top_k).
|
| 1273 |
+
k_index = k.sub_(1).unsqueeze(1)
|
| 1274 |
+
top_k_mask = logits.topk(max_top_k, dim=1).values.gather(1, k_index.long())
|
| 1275 |
+
# Handle non-topk rows.
|
| 1276 |
+
top_k_mask.masked_fill_(no_top_k_mask.unsqueeze(1), -float("inf"))
|
| 1277 |
+
logits.masked_fill_(logits < top_k_mask, -float("inf"))
|
| 1278 |
+
return logits
|
| 1279 |
+
|
| 1280 |
+
def apply_top_k_top_p(
|
| 1281 |
+
logits: torch.Tensor,
|
| 1282 |
+
k: Optional[torch.Tensor],
|
| 1283 |
+
p: Optional[torch.Tensor],
|
| 1284 |
+
) -> torch.Tensor:
|
| 1285 |
+
"""Apply top-k and top-p masks to the logits.
|
| 1286 |
+
|
| 1287 |
+
If a top-p is used, this function will sort the logits tensor,
|
| 1288 |
+
which can be slow for large batches.
|
| 1289 |
+
|
| 1290 |
+
The logits tensor may be updated in-place.
|
| 1291 |
+
"""
|
| 1292 |
+
if p is None:
|
| 1293 |
+
if k is None:
|
| 1294 |
+
return logits
|
| 1295 |
+
|
| 1296 |
+
# Avoid sorting vocab for top-k only case.
|
| 1297 |
+
return apply_top_k_only(logits, k)
|
| 1298 |
+
|
| 1299 |
+
logits_sort, logits_idx = logits.sort(dim=-1, descending=False)
|
| 1300 |
+
|
| 1301 |
+
if k is not None:
|
| 1302 |
+
# Apply top-k.
|
| 1303 |
+
top_k_mask = logits_sort.size(1) - k.to(torch.long) # shape: B
|
| 1304 |
+
# Get all the top_k values.
|
| 1305 |
+
top_k_mask = logits_sort.gather(1, top_k_mask.unsqueeze(dim=1))
|
| 1306 |
+
top_k_mask = logits_sort < top_k_mask
|
| 1307 |
+
logits_sort.masked_fill_(top_k_mask, -float("inf"))
|
| 1308 |
+
|
| 1309 |
+
if p is not None:
|
| 1310 |
+
# Apply top-p.
|
| 1311 |
+
probs_sort = logits_sort.softmax(dim=-1)
|
| 1312 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1, out=probs_sort)
|
| 1313 |
+
top_p_mask = probs_sum <= 1 - p.unsqueeze(dim=1)
|
| 1314 |
+
# at least one
|
| 1315 |
+
top_p_mask[:, -1] = False
|
| 1316 |
+
logits_sort.masked_fill_(top_p_mask, -float("inf"))
|
| 1317 |
+
|
| 1318 |
+
# Re-sort the probabilities.
|
| 1319 |
+
logits = logits_sort.scatter(dim=-1, index=logits_idx, src=logits_sort)
|
| 1320 |
+
return logits
|
| 1321 |
+
|
| 1322 |
+
def _sample_next_token(
|
| 1323 |
+
logits_BCxV: torch.Tensor,
|
| 1324 |
+
temperature: float,
|
| 1325 |
+
top_p: float,
|
| 1326 |
+
top_k: int
|
| 1327 |
+
):
|
| 1328 |
+
if temperature in [0, None]:
|
| 1329 |
+
return torch.argmax(logits_BCxV, dim=-1)
|
| 1330 |
+
|
| 1331 |
+
logits_BCxV = logits_BCxV / temperature
|
| 1332 |
+
logits = apply_top_k_top_p(logits_BCxV, torch.tensor([top_k]), torch.tensor([top_p]))
|
| 1333 |
+
|
| 1334 |
+
final_probs_BCxV = torch.softmax(logits, dim=-1)
|
| 1335 |
+
|
| 1336 |
+
sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
|
| 1337 |
+
sampled_indices_C = sampled_indices_BC.squeeze(-1)
|
| 1338 |
+
return sampled_indices_C
|
| 1339 |
+
|
| 1340 |
+
# def _sample_next_token(
|
| 1341 |
+
# logits_BCxV: torch.Tensor,
|
| 1342 |
+
# temperature: float,
|
| 1343 |
+
# top_p: float,
|
| 1344 |
+
# top_k: int,
|
| 1345 |
+
# audio_eos_value: int,
|
| 1346 |
+
# ) -> torch.Tensor:
|
| 1347 |
+
# if temperature == 0.0:
|
| 1348 |
+
# return torch.argmax(logits_BCxV, dim=-1)
|
| 1349 |
+
|
| 1350 |
+
# logits_BCxV = logits_BCxV / temperature
|
| 1351 |
+
|
| 1352 |
+
# if audio_eos_value is not None and audio_eos_value >= 0:
|
| 1353 |
+
# top_logit_indices_BC = torch.argmax(logits_BCxV, dim=-1)
|
| 1354 |
+
# eos_not_highest_mask_BC = top_logit_indices_BC != audio_eos_value
|
| 1355 |
+
# mask_eos_unless_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
|
| 1356 |
+
# mask_eos_unless_highest_BCxV[eos_not_highest_mask_BC, audio_eos_value] = True
|
| 1357 |
+
# logits_BCxV = logits_BCxV.masked_fill(mask_eos_unless_highest_BCxV, -torch.inf)
|
| 1358 |
+
|
| 1359 |
+
# if top_k is not None:
|
| 1360 |
+
# _, top_k_indices_BCxV = torch.topk(logits_BCxV, k=top_k, dim=-1)
|
| 1361 |
+
# mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
|
| 1362 |
+
# mask = mask.scatter(dim=-1, index=top_k_indices_BCxV, value=False)
|
| 1363 |
+
# logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)
|
| 1364 |
+
|
| 1365 |
+
# if top_p < 1.0:
|
| 1366 |
+
# probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
| 1367 |
+
# sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(probs_BCxV, dim=-1, descending=True)
|
| 1368 |
+
# cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)
|
| 1369 |
+
|
| 1370 |
+
# sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
|
| 1371 |
+
# sorted_indices_to_remove_BCxV = torch.roll(sorted_indices_to_remove_BCxV, shifts=1, dims=-1)
|
| 1372 |
+
# sorted_indices_to_remove_BCxV[..., 0] = torch.zeros_like(sorted_indices_to_remove_BCxV[..., 0])
|
| 1373 |
+
|
| 1374 |
+
# indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
|
| 1375 |
+
# indices_to_remove_BCxV = indices_to_remove_BCxV.scatter(
|
| 1376 |
+
# dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV
|
| 1377 |
+
# )
|
| 1378 |
+
# logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)
|
| 1379 |
+
|
| 1380 |
+
# final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
| 1381 |
+
|
| 1382 |
+
# sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
|
| 1383 |
+
# sampled_indices_C = sampled_indices_BC.squeeze(-1)
|
| 1384 |
+
# return sampled_indices_C
|
| 1385 |
+
|
| 1386 |
+
|
| 1387 |
+
# @torch.no_grad()
|
| 1388 |
+
# def generate(
|
| 1389 |
+
# self,
|
| 1390 |
+
# enc_in: torch.Tensor,
|
| 1391 |
+
# temperature: float,
|
| 1392 |
+
# top_p: float,
|
| 1393 |
+
# top_k: int,
|
| 1394 |
+
# output_attentions=False) :
|
| 1395 |
+
|
| 1396 |
+
# enc_in_uncond = torch.zeros_like(enc_in)
|
| 1397 |
+
# enc_in = torch.cat((enc_in, enc_in_uncond), dim=0) # [B, T]
|
| 1398 |
+
# enc_state = EncoderInferenceState.new(self.config, enc_in)
|
| 1399 |
+
# enc_out = self.encoder(enc_in, enc_state)
|
| 1400 |
+
|
| 1401 |
+
# dec_in = torch.tensor([4096], device=enc_in.device).long().unsqueeze(0)
|
| 1402 |
+
# dec_in_uncond = torch.tensor([4096], device=enc_in.device).long().unsqueeze(0)
|
| 1403 |
+
# dec_in = torch.cat((dec_in, dec_in_uncond), dim=0)
|
| 1404 |
+
|
| 1405 |
+
# dec_state = DecoderInferenceState.new(
|
| 1406 |
+
# self.config, enc_state, enc_out, dec_in
|
| 1407 |
+
# )
|
| 1408 |
+
# dec_state.cross_attn_mask = dec_state.cross_attn_mask[:,:,[0], :]
|
| 1409 |
+
# # Masking CA for CFG
|
| 1410 |
+
# dec_state.cross_attn_mask[-1,:,:, :] = False
|
| 1411 |
+
|
| 1412 |
+
# cnt = 0
|
| 1413 |
+
# cross_attns = ()
|
| 1414 |
+
# all_logits = ()
|
| 1415 |
+
# while cnt < 34 :
|
| 1416 |
+
# dec_state.prepare_step(0, cnt+1)
|
| 1417 |
+
# # Masking CA for CFG
|
| 1418 |
+
# dec_state.cross_attn_mask[-1,:,:, :] = False
|
| 1419 |
+
# out = self.decoder(dec_in, dec_state)
|
| 1420 |
+
# cross_attns += (out.cross_attentions, )
|
| 1421 |
+
# logits = out['logits']
|
| 1422 |
+
# # print(logits.size())
|
| 1423 |
+
# # print(logits[0])
|
| 1424 |
+
# # print(logits[1])
|
| 1425 |
+
# logits = logits[0] + self.config.model.cfg_val * (logits[0] - logits[1])
|
| 1426 |
+
# # logits = logits[0]
|
| 1427 |
+
# # print(logits.size())
|
| 1428 |
+
# all_logits += (logits,)
|
| 1429 |
+
|
| 1430 |
+
# ntp = _sample_next_token(
|
| 1431 |
+
# logits.squeeze(1)[-1],
|
| 1432 |
+
# temperature=temperature,
|
| 1433 |
+
# top_k=top_k,
|
| 1434 |
+
# top_p=top_p,
|
| 1435 |
+
# audio_eos_value=4097)
|
| 1436 |
+
# # print(dec_in.size(), ntp.size(), ntp)
|
| 1437 |
+
# # dec_in = torch.cat((dec_in, ntp.unsqueeze(0).view(-1,1)), dim=1)
|
| 1438 |
+
|
| 1439 |
+
# dec_in = torch.cat((dec_in, torch.stack((ntp.unsqueeze(0), ntp.unsqueeze(0)))), dim=1)
|
| 1440 |
+
|
| 1441 |
+
# if ntp.item() == 4097 :
|
| 1442 |
+
# break
|
| 1443 |
+
# cnt += 1
|
| 1444 |
+
# return dec_in, all_logits, cross_attns
|
| 1445 |
+
|
| 1446 |
+
# def _sample_next_token(
|
| 1447 |
+
# logits_BCxV: torch.Tensor,
|
| 1448 |
+
# temperature: float,
|
| 1449 |
+
# top_p: float,
|
| 1450 |
+
# top_k: int,
|
| 1451 |
+
# audio_eos_value: int,
|
| 1452 |
+
# ) -> torch.Tensor:
|
| 1453 |
+
# if temperature == 0.0:
|
| 1454 |
+
# return torch.argmax(logits_BCxV, dim=-1)
|
| 1455 |
+
|
| 1456 |
+
# logits_BCxV = logits_BCxV / temperature
|
| 1457 |
+
|
| 1458 |
+
# if audio_eos_value is not None and audio_eos_value >= 0:
|
| 1459 |
+
# top_logit_indices_BC = torch.argmax(logits_BCxV, dim=-1)
|
| 1460 |
+
# eos_not_highest_mask_BC = top_logit_indices_BC != audio_eos_value
|
| 1461 |
+
# mask_eos_unless_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
|
| 1462 |
+
# mask_eos_unless_highest_BCxV[eos_not_highest_mask_BC, audio_eos_value] = True
|
| 1463 |
+
# logits_BCxV = logits_BCxV.masked_fill(mask_eos_unless_highest_BCxV, -torch.inf)
|
| 1464 |
+
|
| 1465 |
+
# if top_k is not None:
|
| 1466 |
+
# _, top_k_indices_BCxV = torch.topk(logits_BCxV, k=top_k, dim=-1)
|
| 1467 |
+
# mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
|
| 1468 |
+
# mask = mask.scatter(dim=-1, index=top_k_indices_BCxV, value=False)
|
| 1469 |
+
# logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)
|
| 1470 |
+
|
| 1471 |
+
# if top_p < 1.0:
|
| 1472 |
+
# probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
| 1473 |
+
# sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(probs_BCxV, dim=-1, descending=True)
|
| 1474 |
+
# cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)
|
| 1475 |
+
|
| 1476 |
+
# sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
|
| 1477 |
+
# sorted_indices_to_remove_BCxV = torch.roll(sorted_indices_to_remove_BCxV, shifts=1, dims=-1)
|
| 1478 |
+
# sorted_indices_to_remove_BCxV[..., 0] = torch.zeros_like(sorted_indices_to_remove_BCxV[..., 0])
|
| 1479 |
+
|
| 1480 |
+
# indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
|
| 1481 |
+
# indices_to_remove_BCxV = indices_to_remove_BCxV.scatter(
|
| 1482 |
+
# dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV
|
| 1483 |
+
# )
|
| 1484 |
+
# logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)
|
| 1485 |
+
|
| 1486 |
+
# final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
|
| 1487 |
+
|
| 1488 |
+
# sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
|
| 1489 |
+
# sampled_indices_C = sampled_indices_BC.squeeze(-1)
|
| 1490 |
+
# return sampled_indices_C
|