File size: 7,795 Bytes
d7fc8c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
{
 "cells": [
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "预处理第一步:合并测试集的题目和答案",
   "id": "be5125e8e3ab71fd"
  },
  {
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-09-09T07:57:36.566966Z",
     "start_time": "2024-09-09T07:57:34.545954Z"
    }
   },
   "cell_type": "code",
   "source": [
    "import json\n",
    "\n",
    "# 文件路径\n",
    "question_path = './CMB/CMB-Exam/CMB-test/CMB-test-choice-question-merge.json'\n",
    "answer_path = './CMB/CMB-Exam/CMB-test/CMB-test-choice-answer.json'\n",
    "\n",
    "# 读取文件的内容\n",
    "with open(question_path, 'r', encoding='utf-8') as answer_file:\n",
    "    answer_data = json.load(answer_file)\n",
    "\n",
    "with open(answer_path, 'r', encoding='utf-8') as question_file:\n",
    "    question_data = json.load(question_file)\n",
    "\n",
    "# 初始化存储合并结果的列表\n",
    "merged_data = []\n",
    "\n",
    "# 遍历答案数据\n",
    "for answer_item in answer_data:\n",
    "    for question_item in question_data:\n",
    "        if answer_item[\"id\"] == question_item[\"id\"]:\n",
    "            # 将两个数据字典合并\n",
    "            merged_item = {**question_item, **answer_item}\n",
    "            merged_data.append(merged_item)\n",
    "            break\n",
    "\n",
    "# 将合并后的数据保存到新的文件中\n",
    "with open('./CMB/CMB-Exam/CMB-test/CMB-test-merged-with-id.json', 'w', encoding='utf-8') as merged_file:\n",
    "    json.dump(merged_data, merged_file, ensure_ascii=False, indent=4)\n",
    "\n",
    "print(\"合并完成,数据已保存到 CMB-test-choice-merged-with-id.json 文件中。\")\n"
   ],
   "id": "2ead8ebe22d1bed2",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "合并完成,数据已保存到 CMB-test-choice-merged-with-id.json 文件中。\n"
     ]
    }
   ],
   "execution_count": 4
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "预处理第二步:将train、valid和test的字段统一起来,主要是删除测试集的id还有验证集的explanation字段",
   "id": "2cdc6572b1bfea28"
  },
  {
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-09-09T07:57:37.704989Z",
     "start_time": "2024-09-09T07:57:37.599535Z"
    }
   },
   "cell_type": "code",
   "source": [
    "# 文件路径\n",
    "merge_path = './CMB/CMB-Exam/CMB-test/CMB-test-merged-with-id.json'\n",
    "\n",
    "# 加载测试集\n",
    "with open(merge_path, 'r', encoding='utf-8') as merge_file:\n",
    "    merge_data = json.load(merge_file)\n",
    "\n",
    "# 删除测试集的id字段\n",
    "for item in merge_data:\n",
    "    del item[\"id\"]\n",
    "    \n",
    "# 保存到新的文件中\n",
    "with open('./CMB/CMB-Exam/CMB-test/CMB-test-merge.json', 'w', encoding='utf-8') as merge_file:\n",
    "    json.dump(merge_data, merge_file, ensure_ascii=False, indent=4)\n",
    "    \n",
    "print(\"字段统一完成,数据已保存到 CMB-test-merge.json 文件中。\")"
   ],
   "id": "c0542800b55838d1",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "字段统一完成,数据已保存到 CMB-test-merged.json 文件中。\n"
     ]
    }
   ],
   "execution_count": 5
  },
  {
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-09-09T08:43:40.171865Z",
     "start_time": "2024-09-09T08:43:40.161872Z"
    }
   },
   "cell_type": "code",
   "source": [
    "# 文件路径\n",
    "train_path = './CMB/CMB-Exam/CMB-val/CMB-val-merge.json'\n",
    "\n",
    "# 加载验证集\n",
    "with open(train_path, 'r', encoding='utf-8') as train_file:\n",
    "    train_data = json.load(train_file)\n",
    "    \n",
    "# 删除验证集的explanation字段\n",
    "for item in train_data:\n",
    "    del item[\"explanation\"]\n",
    "    \n",
    "# 保存到新的文件中\n",
    "with open('./CMB/CMB-Exam/CMB-val/CMB-val-merge.json', 'w', encoding='utf-8') as train_file:\n",
    "    json.dump(train_data, train_file, ensure_ascii=False, indent=4)\n",
    "    \n",
    "print(\"字段统一完成,数据已保存到 CMB-val-merge.json 文件中。\")"
   ],
   "id": "566f2d1e6fc551e9",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "字段统一完成,数据已保存到 CMB-val-merge.json 文件中。\n"
     ]
    }
   ],
   "execution_count": 8
  },
  {
   "metadata": {},
   "cell_type": "markdown",
   "source": "预处理第三步:将数据集option字段的格式从字典转化为列表",
   "id": "84a1b5c5e12a8dbd"
  },
  {
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-09-09T09:18:26.355571Z",
     "start_time": "2024-09-09T09:18:21.625915Z"
    }
   },
   "cell_type": "code",
   "source": [
    "# 样例\n",
    "# 从{ \"A\": \"视网膜血管炎\", \"B\": \"黄斑水肿\", \"C\": \"脉络膜炎\", \"D\": \"下方玻璃体的雪球样混浊\", \"E\": \"肉芽肿性前葡萄膜炎\", \"F\": null }\n",
    "# 变成 [ { \"key\": \"A\", \"value\": \"精神紧张诱发\" }, { \"key\": \"B\", \"value\": \"含化硝酸甘油减轻\" }, { \"key\": \"C\", \"value\": \"呼吸时加重,屏气时消失\" }, { \"key\": \"D\", \"value\": \"压迫加剧\" }, { \"key\": \"E\", \"value\": \"进食加剧\" } ]\n",
    "\n",
    "import json\n",
    "\n",
    "# 文件路径\n",
    "train_path = './CMB/CMB-Exam/CMB-train/CMB-train-merge.json'\n",
    "val_path = './CMB/CMB-Exam/CMB-val/CMB-val-merge.json'\n",
    "test_path = './CMB/CMB-Exam/CMB-test/CMB-test-merge.json'\n",
    "\n",
    "# 加载训练集\n",
    "with open(train_path, 'r', encoding='utf-8') as train_file:\n",
    "    train_data = json.load(train_file)\n",
    "    \n",
    "# 加载验证集\n",
    "with open(val_path, 'r', encoding='utf-8') as val_file:\n",
    "    val_data = json.load(val_file)\n",
    "    \n",
    "# 加载测试集\n",
    "with open(test_path, 'r', encoding='utf-8') as test_file:\n",
    "    test_data = json.load(test_file)\n",
    "    \n",
    "# 将option字段的格式从字典转化为列表\n",
    "def convert_option(data):\n",
    "    for item in data:\n",
    "        option = []\n",
    "        for key, value in item[\"option\"].items():\n",
    "            if value:\n",
    "                option.append({\"key\": key, \"value\": value})\n",
    "        item[\"option\"] = option\n",
    "        \n",
    "convert_option(train_data)\n",
    "convert_option(val_data)\n",
    "convert_option(test_data)\n",
    "\n",
    "# 保存到新的文件中\n",
    "with open(train_path, 'w', encoding='utf-8') as train_file:\n",
    "    json.dump(train_data, train_file, ensure_ascii=False, indent=4)\n",
    "    \n",
    "with open(val_path, 'w', encoding='utf-8') as val_file:\n",
    "    json.dump(val_data, val_file, ensure_ascii=False, indent=4)\n",
    "    \n",
    "with open(test_path, 'w', encoding='utf-8') as test_file:\n",
    "    json.dump(test_data, test_file, ensure_ascii=False, indent=4)"
   ],
   "id": "35dfd0303032468a",
   "outputs": [],
   "execution_count": 3
  },
  {
   "metadata": {},
   "cell_type": "code",
   "outputs": [],
   "execution_count": null,
   "source": "",
   "id": "981c1a2d0dff8354"
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}